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 There is a direct link between global warming and hunger in emerging West African nations like 
Ivory Coast, where the population is overgrowing, and food insecurity is rising. This work aims to 
examine and explore climate change's effects on agriculture production in Ivory Coast from 1990 
to 2019. Various stationarity tests, including the Phillips-Perron (PP) and the Augmented Dickey-
Fuller (ADF), are applied to determine the variables' order of integration. The autoregressive 
distributed lag (ARDL) approach is employed to model the long- and short-run relationships 
between temperature, rainfall, carbon dioxide emissions, domestic credit, gross capital formation, 
and agriculture sector and subsectors. The present study uses the Johansen cointegration test to 
verify the long-run cointegration of the ARDL estimation. The findings reveal that all the variables 
are integrated into order zero or one. Cointegration tests demonstrate a valid long-term association 
between the variables. Agriculture and related subsectors in Ivory Coast were found to benefit from 
increasing temperature over the long run, except for the fishery subsector, where the impact is 
negligible. In the short run, temperature’s effect is positive on aggregate agriculture, although it is 
not statistically significant. Its effect is beneficial to agriculture's subsectors, except for fishery 
production. In both runs, Ivory Coast’s aggregate agriculture sector and fishery subsector are 
negatively affected by rainfall. An insignificant favorable effect of rainfall is found on crop 
production in both runs. The estimated results indicated that the role of CO2 is positive on 
agriculture and crop production in both run estimations. However, CO2 does not impact livestock 
production. It has a long-term positive influence on fishery production but no effect in the short 
run. Domestic credit is found to have a beneficial influence on agriculture and its subsectors in both 
runs, except for crop and livestock production, where the effect is negative and insignificant in the 
short run. Gross capital formation negatively impacts agriculture and its subsectors in Ivory Coast, 
except crop production, where it only has an insignificant beneficial effect in the short run. The 
same is true for fishery production, which only had a significant favourable impact effect in the 
short run. For the government and policymakers, the findings guide the formulation of suitable 
policies to address global warming's effects on agriculture and guarantee sustainable food 
production for the increasing population. 
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INTRODUCTION

Thirty percent or more of the world's population is at risk of hunger, 

showing that food insecurity is rising worldwide (Sibanda and 

Mwamakamba, 2021). According to FAO (2021), 927.6 million 

people worldwide were affected by food insecurity in some form or 

another. Africa accounts for 37.3% of this total, with 346.6 million 

people suffering from food insecurity (Xie et al., 2021). Economic 

instability, population growth, and climate change continue to cause 

severe hunger in most nations, even though the coronavirus 

(COVID-19) pandemic has been the primary driver of food 

insecurity over the past year (IFPRI, 2021). Population expansion, 

climate change, and economic instability have all contributed to a 

rise in undernourishment across Africa between 2017 and 2019, as 

reported by Schilling et al. (2020). Food insecurity is expected to 

reach an alarming 25.9% (346.6 million) in Africa by 2020, against 

17.7% (203.5 million) in 2014. Specifically, West Africa is the worst 

hit, with 28.8% of its population (115.7 million) threatened by food 

insecurity in 2020, against 8.6% in 2014 (FAO, IFAD, UNICEF, WFP, 

WHO, 2021; Otekunrin et al., 2021). The ability to adapt to climate 

change is often limited in countries where food is scarce (IFPRI, 

2020). Over 115 million people in West Africa are severely food 

insecure, and climate change is a major contributor to this problem 

(Ntiamoah et al., 2022). 

Natural resources are impacted by climate change, which in turn 

has repercussions for food security, human health, the labor 

market, and the economy (Thiault et al., 2019; Chandio et al., 

2020c). The agricultural sector is one of the most at risk from 

climate change, and changes in weather patterns can have far-

reaching effects on the amount of food that can be produced 

worldwide (Kirby et al., 2016). Changes in temperature, 

precipitation, and sunshine duration due to human-caused 

climate change have direct and indirect effects on agricultural 

productivity cycles. These shifts are a major contributor to the 

growing problem of food insecurity since they have altered the 

historical pattern of agricultural productivity. The impacts of 

https://www.scienceimpactpub.com/jei
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climate change on agriculture are seen worldwide, but they are 

felt most acutely in low-income nations (Ali et al., 2017). Sub-

Saharan Africa, home to over a billion people across fifty-four 

nations (World Bank, 2019), is highly susceptible to climate 

change impacts (Boko et al., 2016; Gan et al., 2016). Because they 

rely on rainfed agriculture, African nations, especially sub-

Saharan African ones, are particularly sensitive to climate shocks 

(Mihiretu et al., 2019). Modeling climate change’s effects on food 

security is essential to lessen the agriculture sector's susceptibility 

to climate change and mitigate its negative consequences (Atanga 

and Tankpa, 2021). Carbon dioxide emissions, temperature, 

precipitation, domestic credit, and gross capital formation were all 

evaluated to see how they would affect Ivory Coast's primary food-

producing systems. 

Twenty-one percent of GDP, fifty percent of all jobs, and sixty 

percent of all merchandise exports in Ivory Coast in 2018 came 

from the agricultural sector, making it a vital part of the economy 

(World Bank, 2023). However, in the present context of climate 

change, the hazards associated with rising temperatures and 

increased climate weigh severely on Ivorian agriculture. Food 

production is impacted by climate change in several ways, 

including direct and indirect effects on the crop and livestock 

subsectors (Dumortier et al., 2021; Warsame et al., 2022). Fish 

production is also seriously threatened by climate change (Pauly 

and Cheung, 2018), which reduces the fish's possibilities of 

maturing and reproducing, thus their chances of survival (Clarke 

et al., 2021). Ivory Coast's agricultural sector must be more 

resilient, so it is important to learn about the risks of climate 

change. The implications of climate change on the various 

agricultural sectors must be uncovered through an integrated 

investigation. This paper examines climate change's effects on 

Ivory Coast's agricultural systems. The following is a list of the 

specific aims: To (1) evaluate how climate change affected the 

country's overall agricultural system, (2) evaluate how it affected 

the country's crop production system, (3) evaluate how it affected 

the country's livestock production system, and (4) evaluate how it 

affected the country's fishery production system. 

This research contributes to the existing body of knowledge in the 

following ways. First, this is a nationwide study examining how 

factors including carbon dioxide emissions, domestic credit, 

precipitation, temperature, and gross capital formation affect 

agricultural output in the long and short term. Second, the 

relationship between climate change and food production has 

been the subject of numerous studies. However, additional 

research is needed across various agricultural subsectors, 

including crop, livestock, and fishery. Third, assessing the impact 

of climate change on agricultural productivity using econometric 

models like the autoregressive distributed lag (ARDL) model is a 

new field of study, with few studies in Ivory Coast. Last but not 

least, the available studies did not consider other factors expected 

to affect agricultural performance, such as domestic financing to 

the private sector and gross capital formation (Misra et al., 2016). 

The present study fills this gap by including domestic credit and 

gross capital formation as control variables. According to previous 

research, domestic credit increases agricultural output, and 

capital formation provides infrastructure for the agricultural 

sector, contributing to increased agricultural productivity 

(Chandio et al., 2022c; Zakaria et al., 2019). Mwabutwa (2017) 

claims that public investment in agriculture is essential to the 

sector's expansion. Growth in agriculture may be possible only if 

public investments in irrigation, extension, and research 

complement the expansion of the credit supply to agriculture from 

traditional sources (Misra et al., 2016). Finally, this study provides 

a valuable policy for enhancing agricultural production, coping 

with the effects of climate change, and achieving long-term food 

security. Policymakers should pay close attention to the findings 

of this study because they highlight the importance of climate-smart 

agriculture in increasing agricultural productivity and the need for 

governments and policymakers to develop effective and efficient 

policies to combat climate change and increase agricultural 

productivity in the context of climatic change. 

The remaining parts of the study contain a literature review, data 

and methods, results and discussion, and a conclusion and policy 

implications. The "Literature review" section explores the 

literature and explains how climate change affects agricultural 

outputs like crops, animals, and fishery. The econometric models 

developed to investigate climate change's impact on agricultural 

output are also included. Data (variable definitions) and methods 

(theoretical and economic models) are outlined in the research's 

"Materials and Methods" section. In "Results and Discussion," the 

outcomes of employing the ARDL methodologically-based data 

technique are displayed. In the paper's closing section, titled 

"Conclusion and policy implications," we present the study's key 

findings and potential policy alternatives for mitigating the effects 

of climate change on aggregate agriculture and its subsectors' 

production. 

Uncertainty in climate projections and changes in environmental 

conditions pose additional threats to food security in developing 

countries, emphasizing the importance of finding a connection 

between global warming and agricultural productivity (Rosegrant 

et al., 2008; Khor, 2009; Dudu and Cakmak, 2018). Furthermore, 

the influence of climate change on agricultural production 

indirectly produces major changes in consumption trends through 

prices, such as higher animal feed costs due to drought, which 

leads to higher meat prices and, subsequently, lower meat 

consumption. As a result, policymakers need to weigh the 

potential effects of climate change on agriculture. Empirical 

models, such as econometric models (time series or panel data) 

and the Ricardian model, are commonly used in socioeconomics to 

examine climate change’s effects on agricultural production 

(Nasrullah et al., 2021). Conversely, the econometric method is 

relatively recent (Chandio et al., 2021b). 

Numerous studies have demonstrated the detrimental 

consequences of climate change on agricultural production. 

Akhtar and Masud (2022), using the GMM approach with 1985 to 

2016 time series data, found that temperature reduces rice and 

vegetable production in Malaysia while CO2 decreases coffee 

production. In Iran, increasing temperature and precipitation 

above identified threshold levels reduced barley yield in the long 

run during the 1999-2015 period using the DOLS approach with 

panel data (Azizi et al., 2022). According to the results of the ARDL 

approach, from 1968-2014 in Turkey, CO2 and temperature 

decreased cereal yield, but rainfall improved it in both runs 

(Chandio et al., 2020b). In Turkey, using the ARDL technique with 

time series data from 1980 to 2016, CO2 and temperature 

adversely affected wheat production in both runs, but 

precipitation improved it (Chandio et al., 2021a). Bangladesh’s 

fishery subsector was positively influenced by rainfall, sunshine, 

and SST between 1961 and 2019. ARDL findings also indicated 

that temperature negatively impacts fish production in both runs, 

but CO2 negatively affects it only in the short run (Begum et al., 

2022). Based on time series data from 1965 to 2015 using ARDL, 

temperature and CO2 were observed to unfavorably impact 

agricultural output in India, while rainfall was found to influence 

it favorably (Chandio et al., 2022a). Somalia's livestock subsector 

was unfavorably influenced by temperature but favorably impacted 
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by rainfall in both runs between 1985 and 2016. ARDL findings also 

indicated that CO2 enhances livestock production in the short run 

but has no significant impact in the long run (Warsame et al., 

2022). A study utilizing data from 1988 to 2014 in Bangladesh 

discovered that rainfall improves cereal production in both runs, 

but CO2 decreases it. The ARDL approach findings also show that 

temperature decreases cereal production in the short run 

(Chandio et al., 2022b). In Nigeria, rainfall has a beneficial but 

insignificant effect on agriculture, and all subsectors studied 

between the 1970 and 2012 period using the GMM approach 

(Olayide et al., 2016). There was no evidence of a negative impact 

of CO2 on crop production in a study conducted in Somalia 

between 1985 and 2016 using the ARDL analysis approach. 

However, results further show that rainfall improves crop 

production in the long run but decreases it in the short run, 

whereas temperature decreases it in both runs. 

 

MATERIALS AND METHODS 

Data and Variables 

All variables were analyzed using data from 1990 to 2019. The 

World Bank Development Indicators (WDI) were used to gather 

data on agriculture GDP (AGDP) in 2015 constant USD, gross 

capital formation (GCF) in 2015 constant USD, domestic credit 

(DC) in 2015 constant USD, and CO2 emissions in kt. The annual 

mean temperature (TEMP) and annual rainfall (RF) variables of 

climate change were obtained from the World Bank's Climate 

Change Knowledge Portal (CCKP). Gross domestic product 

(GDP) data in 2015 constant USD and the contribution of the 

agricultural subsectors to agriculture data from the website of 

the National Institute of Statistics of Ivory Coast have been used 

to calculate variables on crop GDP (CGDP), livestock GDP 

(LGDP), and fish and forestry GDP (FGDP) in 2015 constant USD. 

The multicollinearity issue was resolved by transforming all 

variables into natural logarithms. The variables can also be read 

as elasticities due to their natural logarithmic forms. Aggregate 

agriculture, crop, livestock, and fishery outputs were accounted 

for in this study using AGDP, CGDP, LGDP, and FGDP, 

respectively, as dependent variables in each model. However, we 

used other factors such as CO2 emissions, average temperature, 

rainfall, domestic credit, and gross capital formation as control 

variables. Information on the data, its origins, and some 

descriptive statistics are summarized in Table 1. 

 

Methodology 

The study's analytical procedures are outlined in Figure 1. The 

first step was identifying relevant variables explaining 

agricultural productivity and climate change's impact on it. The 

literature guided the selection of variables. The impacts of climate 

change on agriculture and its subsectors (1990-2019) were then 

determined, and a suitable data range was identified. This 

information was selected due to its availability. After descriptive 

data were assessed, first-generation unit root tests (ADF and PP) 

were used to conduct unit root tests. Following the long- and 

short-run estimates for the ARDL model, we conducted a bounds 

test to test for cointegration. Next, we used FMOLS, DOLS, and CCR 

models to test the model's durability. Serial correlation, 

heteroscedasticity, normalcy, and error specification were all 

examined usinThere was no evidence of a detrimental impact of 

temperature on agricultural total factor productivity (ATFP) 

growth in a study that involved 36 African countries between 

1981 and 2010 using the FGLS panel data approach. However, 

findings further reveal a beneficial effect of precipitation on 

ATFP growth in those countries (Ogundari and Onyeaghala, 

2021). A 1971-2016 analysis employing the FGLS and FMOLS in 

a panel data set in 11 Asian and African countries found that 

temperature rise decreases cereal production, but CO2 and 

rainfall improve it (Kumar et al., 2021). A shortage of rainfall was 

found to decrease cereal crop productivity, but the temperature 

was observed to increase it in Tunisia using the ARDL with 1975 

to 2014 panel data (Attiaoui and Boufateh, 2019). While there is 

a plethora of econometric research looking at the effects of 

climate change on agriculture, only some of these studies have 

specifically targeted West African countries. This research was 

motivated by a lack of previous efforts to quantify the impact of 

climate change on agriculture and its subsectors in Ivory Coast.  

g diagnostic tests like the Breusch-Godfrey LM test, the Breusch-

Pagan Godfrey test, the Jarque-Bera test, and the Ramsey RESET 

test. Finally, we used the cumulative sum (CUSUM) and cumulative 

sum of squares (CUSUMQ) tests to examine the structural 

reliability of our models. 

Table 1. Data description and source. 

Variables Description Source 
Dependent variables 

AGDP (model 1) Agricultural GDP (constant 2015 US$) WDI 

CGDP (model 2) Crop GDP (constant 2015 US$) AC 

LGDP (model 3) Livestock GDP (constant 2015 US$) AC 

FGDP (model 4) Fishery and Forestry GDP (constant 
2015 US$) 

AC 

Independent variables 

TEMP Annual temperature (average in 0C) CCKP 

RF Annual rainfall (average in mm) CCKP 

CO2 Annual carbon dioxide emissions (kt) WDI 

DC Domestic credit (constant 2015 US$) WDI 

GCF Gross Capital Formation (constant 2015 
US$) 

WDI 

Note: AC: Author’s calculations; CCKP: Climate change knowledge 
Portal of the World Bank; WDI: World development indicators. 

 
Figure 1. Study analytical techniques steps. 

Econometric Modeling 

This analysis employs the time series econometric program 

EViews 12 and the ARDL method created by Pesaran et al. (2001) 

to assess the impact of climate on agricultural, crop, livestock, and 

fishing output in Ivory Coast over the short and long term. Because 

of its widespread use in the academic literature for studying 

cointegration and short- and long-run interactions (Abbas, 2020; 

Asumadu-Sarkodie and Owusu, 2016; Chandio et al., 2020a, b; 

Warsame et al., 2021), ARDL is implemented in this empirical 

 

 

 1.Variable and data period selection 

2.Descriptive statistics 

3.Unit root tests 

4.Cointegration (Bound test) 

5.ARDL estimation 

6.Robustness tests 

7.Diagnostic tests 

8.Stability tests 
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investigation. The cointegration approach is favored since it 

naturally divides the model into the short and long 

run (Pesaran et al., 2001). In addition, it offers some benefits that 

standard statistical methods lack. In the first place, when some 

endogenous variables act as regressors, the ARDL method 

nevertheless yields an unbiased long-run estimation (Adom et al., 

2012). Second, the Ordinary Least Squares (OLS) method is used 

to cointegrate variables and short-run, and long-run coefficients 

are calculated simultaneously. Thirdly, ARDL can be applied even 

if some or all of the regressors in the model are fully I (0), I (1), or 

mutually cointegrated. Because it does not rely on residual 

correlation, the ARDL test is able to deal with cases of endogeneity 

(Pesaran et al., 2001). Finally, the ARDL method yields robust 

and consistent results for small sample sizes,  whereas other 

cointegration procedures are sensitive to sample size (Pesaran and 

Shin, 1998; Pesaran et al., 2001; Adom et al., 2012). A limitation of 

the model is that it makes the linearity assumption between the 

dependent and independent variables. It has been shown that larger 

sample sizes are not appropriate for this method (Warsame et al., 

2021; Abbas et al., 2022; Asfew and Bedemo, 2022; Begum et al., 

2022; Emenekwe et al., 2022). 

In order to express the connection between the dependent 

variables and the climatic variables in Ivory Coast, the following 

linear functions were utilized based on the research of Chandio et 

al. (2020c) and Pickson et al. (2022). 

Model 1: Effect of climatic factors on agriculture production 

AGDPt =  β0 +  β1TEMPt + β2RFt +  β3CO2t +  β4DCt +

 β5GCFt +  εt      (1) 

Model 2: Impact of climate variables on crop production 

CGDPt =  β0 +  β1TEMPt +  β2RFt +  β3CO2t + β4DCt +

 β5GCFt +  εt      (2) 

Model 3: Influence of climate indicators on livestock production 

LGDPt =  β0 +  β1TEMPt +  β2RFt +  β3CO2t +  β4DCt +

 β5GCFt +  εt      (3) 

Model 4: Impact of climate factors on fishery production 

FGDPt =  β0 +  β1TEMPt +  β2RFt +  β3CO2t +  β4DCt +

 β5GCFt +  εt      (4) 

Where Ԑt is the disturbance term in time, AGDP represents 

agricultural GDP, CGDP denotes crop GDP, LGDP shows livestock 

GDP, FGDP stands for fish and forestry GDP, TEMP indicates 

temperature, RF presents rainfall, CO2 specifies carbon dioxide 

emissions, DC is domestic credit, and GCF stands for gross capital 

formation. 

The natural logarithm forms of Equations 1, 2, 3, and 4 are as 

follows:  

Model 1: Influence of climatic factors on agriculture production 

lnAGDPt =  β0 +  β1lnTEMPt +  β2lnRFt + β3lnCO2t +

 β4lnDCt + β5lnGCFt +  εt     (5) 

Model 2: Effect of climate indicators on crop production 

lnCGDPt =  β0 +  β1lnTEMPt +  β2lnRFt +  β3lnCO2t +

 β4lnDCt + β5lnGCFt +  εt     (6) 

Model 3: Impact of climate variables on livestock production 

lnLGDPt =  β0 +  β1lnTEMPt +  β2lnRFt +  β3lnCO2t +

 β4lnDCt + β5lnGCFt +  εt     (7) 

Model 4: Effect of climatic factors on fishery production 

lnFGDPt =  β0 +  β1lnTEMPt +  β2lnRFt +  β3lnCO2t +

 β4lnDCt + β5lnGCFt +  𝜀𝑡     (8) 

Where lnAGDP is the natural logarithm of agriculture GDP, lnCGDP 

stands for the logarithm of base e of crop GDP, lnLGDP indicates 

the natural logarithm of livestock GDP, lnFGDP represents the 

logarithm of base e of fish and forestry GDP, lnTEMP signifies the 

natural logarithm of temperature, lnRF specifies the logarithm for 

base e of rainfall, lnCO2 is the natural logarithm of CO2, lnDC 

presents the logarithm for base e of domestic credit, lnGCF 

denotes the natural logarithm of gross capital formation, while Ԑt 

is defined above. 

There are two main phases to the ARDL model's investigation. The 

first thing to do is to see if there is a correlation between the 

variables over time. In this study, the long-term correlation 

between each model's dependent and independent variables was 

analyzed using the bound test. According to Pesaran et al. (2001), 

the bound test has two critical values: lower and upper bounds. 

Lower-bound critical values are the critical values for variables 

with a value of I (0). In contrast, critical values for I (1) variables 

are upper-bound critical values.  

The following are the hypotheses for the ARDL bounds test. 

H0: absence of equilibrium relationship/variables are not 

cointegrated. 

Ha: presence of long-run relationships/variables are cointegrated. 

If the calculated F-statistic is more than the upper bounds, we 

reject H0 and prove the existence of cointegration between the 

variables. Conversely, if the computed F-statistic is less than the 

lower bounds, we cannot reject H0, implying no equilibrium link 

among the variables. However, if it is within limits, the 

cointegration test is said to be inconclusive (Attiaoui and 

Boufateh, 2019; Demirhan, 2020; Begum et al., 2022). 

The following representations of the error correction model 

(ECM) are used to investigate both the short- and long-run 

linkages between the studied variables. 

Model 1: Impact of climatic indicators on agricultural production 

∆lnAGDPt =  β0 +  ∑ ϑ1i ∆lnAGDPt−i
p
i=1 +  ∑ ϑ2i ∆lnTEMPt−i

q1
i=0 +

 ∑ ϑ3i ∆lnRFt−i
q2
i=0 + ∑ ϑ4i ∆lnCO2t−i

q3
i=0 +  ∑ ϑ5i ∆lnDCt−i

q4
i=0 +

 ∑ ϑ6i ∆lnGCFt−i
q5
i=0 + φECMt−1 +  εt    (9) 

Model 2: Effect of climatic factors on crop production 

∆lnCGDPt =  β0 +  ∑ ϑ1i ∆lnCGDPt−i
p
i=1 +  ∑ ϑ2i ∆lnTEMPt−i

q1
i=0 +

 ∑ ϑ3i ∆lnRFt−i
q2
i=0 + ∑ ϑ4i ∆lnCO2t−i

q3
i=0 +  ∑ ϑ5i ∆lnDCt−i

q4
i=0 +

 ∑ ϑ6i ∆lnGCFt−i
q5
i=0 + φECMt−1 + εt    (10) 

Model 3: Influence of climate variables on livestock production 

∆lnLGDPt =  β0 +  ∑ ϑ1i ∆lnLGDPt−i
p
i=1 +  ∑ ϑ2i ∆lnTEMPt−i

q1
i=0 +

 ∑ ϑ3i ∆lnRFt−i
q2
i=0 + ∑ ϑ4i ∆lnCO2t−i

q3
i=0 +  ∑ ϑ5i ∆lnDCt−i

q4
i=0 +

 ∑ ϑ6i ∆lnGCFt−i
q5
i=0 + φECMt−1 + εt    (11) 

Model 4: Impact of climatic factors on fishery production 

∆lnFGDPt =  β0 +  ∑ ϑ1i ∆lnFGDPt−i
p
i=1 +  ∑ ϑ2i ∆lnTEMPt−i

q1
i=0 +

 ∑ ϑ3i ∆lnRFt−i
q2
i=0 + ∑ ϑ4i ∆lnCO2t−i

q3
i=0 +  ∑ ϑ5i ∆lnDCt−i

q4
i=0 +

 ∑ ϑ6i ∆lnGCFt−i
q5
i=0 + φECMt−1 +  εt    (12) 

Here, ECM connotes the error correction model, and 𝜑 shows its 

coefficient, representing the adjustment time required to return to 

equilibrium after a short-term shock to the system. For a 

significant ECM model, 𝜑 should be negative (Janjua et al., 2014). 

By taking the coefficient of 𝜑 to be significantly negative, empirical 

research shows that any temporary shock in the short run will 

automatically converge to equilibrium in the long term (Omoke et 

al., 2020; Emenekwe et al., 2022). 
 

RESULTS AND DISCUSSION  

Descriptive Statistics 

Table 2 displays the descriptive statistics for each variable. The 

mean values of the dependent variables AGDP, CGDP, LGDP, and 

FGDP are 6.37E+09, 5.54E+09, 4.40E+08, and 3.92E+08, 

respectively, and their standard deviations are 2.12E+09, 

1.99E+09, 1.85E+08, and 3.27E+08, respectively. The mean values 

of explanatory variables, TEMP, RF, CO2, DC, and GCF are 26.786, 

1292.843, 6275, 5.23E+09, and 5.69E+09, respectively, and their 

standard deviations are 0.256187, 112.6953, 2447.612, 2.73E+09, 

and 3.15E+09, respectively. The standard deviations of all 
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variables are less than their mean values, which suggests that the 

variables under consideration are not volatile. In addition, Figure 

2 shows the trend of all study variables. 

 

Correlation Matrices 

The correlation matrices for agriculture production (model 1), 

crop production (model 2), livestock production (model 3), and 

fishery production (model 4) are shown in Table 3. The results 

suggest that TEMP, CO2, DC, and GCF are positively correlated to 

AGDP. At the same time, RF is negatively related to it. In Model 2, 

all the variables positively correlate to CGDP. However, in models 

3 and 4, only DC is positively related to LGDP and FGDP. All the 

remaining variables negatively correlate with LGDP and FGDP. 

The correlation coefficients among the regressors in each model 

are less than one, indicating that the multicollinearity problem is 

not mild. 

 

Unit Root Test 

The Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979) 

and Phillips-Perron (PP) (Phillips and Perron, 1988) tests were 

utilized to ensure that the underlying variables in the current 

work were stationary. The level and the first difference unit root 

tests were initially performed, with only the intercept. Second, 

with the constant and trend terms, and third, with neither term. 

ADF and PP tests have been examined, considering the SC criterion 

at 1%, 5%, and 10% significance levels. Table 4 exhibits the 

findings of the ADF and PP unit root tests, respectively., revealing 

that all the variables under consideration had a combined order of 

integration. This means that some variables were integrated into 

order one [ I (1)], while some were stationary at level [ I (0)]. 

Importantly, the results show no variable integrations in the 

second order [ I (2)] or above. This allows using the ARDL bounds 

test, proposed by Pesaran and Shin (1998) and Pesaran et al. 

(2001), to examine the short- and long-term association between 

the considered variables. 

 

Cointegration Test 

We applied the ARDL bounds method for cointegration to assess 

each model's long-term association between variables. Table 5 

presents the results of the four models, including the relevant 

critical value boundaries. According to these results, the computed 

value of the F-statistic is higher than the upper bounds limits in all 

cases, suggesting that in all models, variables have an equilibrium 

relationship among them.  

 

Lag Selection 

The VAR lag length selection test yielded five distinct criteria 

(Table 6), including the LR (sequential modified LR test statistic), 

FPE (final prediction error), AIC (Akaike information criterion), SC 

(Schwarz information criterion), and HQ (Hannan-Quinn 

information criterion). According to Table 6, the majority of the 

test statistics suggest that lag 3 is the best value for all models. 

Table 2. Descriptive statistics. 

Variables Observation Mean Std. Dev. Min Max 
AGDP 30 6.37E+09 2.12E+09 4.36E+09 1.24E+10 
CGDP 30 5.54E+09 1.99E+09 3.87E+09 1.14E+10 
LGDP 30 4.40E+08 1.85E+08 2.27E+08 9.07E+08 
FGDP 30 3.92E+08 3.27E+08 1.06E+08 1.09E+09 
TEMP 30 26.786 0.256187 26.33 27.32 
RF 30 1292.843 112.6953 1113.93 1580.48 
CO2 30 6275 2447.612 2710 10830 
DC 30 5.23E+09 2.73E+09 2.49E+09 1.18E+10 
GCF 30 5.69E+09 3.15E+09 1.52E+09 1.20E+10 

 

 
Figure 2. Trend of studied variables. 
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Table 3. Correlation matrices. 

Model 1: Agricultural production 

Variables lnAGDP lnTEMP lnRF lnCO2 lnDC lnGCF 

lnAGDP 1      

lnTEMP 0.230 1     

lnRF -0.063 0.146 1    

lnCO2 0.319* 0.636*** 0.240 1   

lnDC 0.925*** 0.103 -0.218 0.182 1  

lnGCF 0.370** 0.677*** 0.250 0.923*** 0.272 1 

Model 2: Crop production 

Variables lnCGDP lnTEMP lnRF lnCO2 lnDC lnGCF 

lnCGDP 1      

lnTEMP 0.396** 1     

lnRF 0.015 0.146 1    

lnCO2 0.539*** 0.636*** 0.240 1   

lnDC 0.857*** 0.103 -0.218 0.182 1  

lnGCF 0.559*** 0.677*** 0.250 0.923*** 0.272 1 

Model 3: Livestock production 

Variables lnLGDP lnTEMP lnRF lnCO2 lnDC lnGCF 

lnLGDP 1      

lnTEMP -0.539*** 1     

lnRF -0.155 0.146 1    

lnCO2 -0.762*** 0.636*** 0.240 1   

lnDC 0.235 0.103 -0.218 0.182 1  

lnGCF -0.770*** 0.677*** 0.250 0.923*** 0.272 1 

Model 4: Fishery production 

Variables lnFGDP lnTEMP lnRF lnCO2 lnDC lnGCF 

lnFGDP 1      
lnTEMP -0.312* 1     
lnRF -0.359* 0.146 1    
lnCO2 -0.374** 0.636*** 0.240 1   
lnDC 0.709*** 0.103 -0.218 0.182 1  

Note: ***, **, and * show 1%, 5%, and 10% significance levels, respectively. 

Table 4. Unit root tests. 

Variables ADF PP 
Intercept Intercept and trend None Intercept Intercept and trend None 

At level 

lnAGDP 0.315 -0.721 0.829 -0.136 -0.638 0.68 

lnCGDP 1.010 -0.777 1.234 0.761 -0.653 0.995 

lnLGDP -2.711* -2.828 -0.690 -2.39 -1.806 -0.774 

lnFGDP -1.634 -1.304 -0.242 -1.634 -1.268 -0.238 

lnTEMP -3.021** -4.291** 0.206 -2.981** -4.244** 0.865 

lnRF -4.528*** -4.647*** 0.500 -4.457*** -4.597*** 0.951 

lnCO2 -1.099 -1.890 2.309 -1.106 -2.053 2.238 

lnDC -0.148 -3.521* 3.071 -0.841 -1.595 0.267 

lnGCF -1.327 -2.487 2.357 -1.384 -1.384 -1.384 

At first difference 
dlnAGDP -4.397*** -5.886*** -4.391*** -4.483*** -6.014*** -4.484*** 

dlnCGDP -4.117*** -5.478*** -4.010*** -4.177*** -4.177*** -4.177*** 

dlnLGDP -4.539*** -4.874*** -4.542*** -4.539*** -4.867*** -4.539*** 

dlnFGDP -4.741*** -5.041*** -4.820*** -4.73*** -6.882*** -4.812*** 

dlnTEMP -6.858*** -6.742*** -6.962*** -15.645*** -15.645*** -15.645*** 

dlnRF -8.803*** -8.635*** -8.909*** -20.546*** -20.054*** -15.457*** 

dlnCO2 -5.859*** -5.802*** -4.933*** -5.827*** -5.775*** -5.127*** 

dlnDC -1.681 -7.911*** -1.632* -4.714*** -7.911*** -4.766*** 

dlnGCF -7.147*** -7.070*** -6.209*** -7.067*** -7.008*** -6.126*** 

Note: ***; ** and * denote the rejection of the null hypothesis by the presence of a unit root at 1%, 5%, and 10% levels, respectively; 
Automatic lag selection based on SC. 
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Table 5. ARDL bounds test. 

Dependent variable Model F-statistic Result 
lnAGDP 1 23.90667 Cointegration 
lnCGDP 2 5.463936 Cointegration 
lnLGDP 3 5.168879 Cointegration 
lnFGDP 4 17.58274 Cointegration 
 Significance Lower bounds I (0) Upper bounds I (1) 
 10% 2.26 3.35 
 5% 2.62 3.79 
 2.50% 2.96 4.18 
 1% 3.41 4.68 

Table 6. VAR lag length selection. 

Lag LogL LR FPE AIC SC HQ 
Model 1 
0 137.989 NA  2.29E-12 -9.777 -9.489 -9.691 
1 235.988 145.183 2.49E-14 -14.369 -12.354 -13.770 
2 287.414 53.331 1.24E-14 -15.512 -11.769 -14.399 
3 391.100 61.443* 3.81e-16* -20.526* -15.055* -18.899* 
Model 2       
0 139.045 NA  2.11E-12 -9.855 -9.567 -9.769 
1 240.441 150.215 1.79E-14 -14.699 -12.683 -14.099 
2 295.204 56.791 6.98E-15 -16.089 -12.345 -14.976 
3 384.219 52.749* 6.35e-16* -20.016* -14.545* -18.389 
Model 3       
0 125.690 NA  5.69E-12 -8.866 -8.577 -8.780 
1 225.587 147.994 5.38E-14 -13.599 -11.583 -12.999 
2 275.022 51.266* 3.11E-14 -14.594 -10.851 -13.481 
3 356.613 48.350 4.91e-15* -17.971* -12.500* -16.344* 
Model 4       
0 102.429 NA 3.18E-11 -7.143 -6.855 -7.057 
1 195.293 137.575 5.07E-13 -11.355 -9.339 -10.756 
2 232.037 38.105 7.52E-13 -11.410 -7.666 -10.297 
3 335.102 1.075* 2.42e-14* -16.378* -10.906* -14.751* 

Note: Included observations: 27; * Indicates the lag order selected by the criterion. 

Short- and Long-run Estimations 

The short- and long-run estimates of temperature, rainfall, CO2, 

domestic credit, and gross capital formation effects on Ivory Coast 

agriculture, crop, livestock, and fishery production are reported in 

Tables 7, 8, 9, and 10, respectively. 

Agriculture and related subsectors in Ivory Coast were found to 

benefit from increasing temperatures over the long run. However, 

when considering the fishery subsector, this impact is negligible. 

This signifies that when temperature increases by 1%, there are 

6.71%, 14.13%, and 17.18% improvements in agriculture, crop, 

and livestock production, respectively. The conclusions on the 

favorable effect of temperature on agriculture and crop 

production are consistent with those of Chandio et al. (2020a), 

Chandio et al. (2021a, b), and Pickson et al. (2022), who concluded 

that temperature improves rice and maize production in both 

runs. Our findings on the beneficial effect of temperature on 

livestock contradict Warsame et al. (2022), who found a 

detrimental impact of temperature on livestock in Somalia. On the 

other hand, our results are consistent with those of Kabubo-

Mariara (2009), who discovered that a unit increase in 

temperature would lead to about a 5% gain in net revenue from 

livestock. This could be because farmers associate animal 

breeding with crop farming as a strategy to reduce the adverse 

effect of global warming on crop productivity (Fadina and Barjolle, 

2018). The study also observed that temperature’s effect on 

aggregate agriculture is positive in the short run, although it is not 

statistically significant. In addition, the temperature had a 

beneficial effect on agriculture’s subsectors, except for fishery 

production. This means that when the temperature rises by 1% in 

the short term, crop production increases by 5.78%, livestock 

production improves by 8.97%, and fish production decreases by 

20.92%. Our result on the short-run detrimental effect of 

temperature on the fishery subsector is in line with Begum et al. 

(2022), who found a negative effect of temperature on fish 

production in Bangladesh in the short term. 

This research suggests that in both runs, Ivory Coast’s aggregate 

agriculture sector and fishery subsector are negatively affected by 

rainfall. This implies that a 10% rise in precipitation decreases 

agriculture output by 1.4% in the short run and 3.98% in the long 

term. Likewise, a one percent increase in rainfall leads to a 3.16% 

short-term and a 5.95% long-term reduction in fishery 

production. These results oppose those of Begum et al. (2022) and 

Chandio et al. (2022a, b), who both discovered a beneficial effect 

of rainfall on fishery and agriculture production, respectively. 

However, our finding on the negative effect of rainfall on 

agriculture is partially consistent with Chandio et al. (2020c), who 

discovered a long-run negative impact of precipitation on 

agriculture output. The adverse effect of precipitation on 

aggregate agriculture and fishery production in Ivory Coast can be 

explained by repetitive flood events in the country in the past 

years (CCKP 2021). According to the CCKP (2021), Ivory Coast is 

very prone to flooding, especially in the southern region with the 

highest rainfall. One of the most important climatic factors is 

precipitation, which is essential to the success of farming 

everywhere. Regarding its intensity and frequency, extreme 

precipitation can have devastating societal and economic 

consequences (Almazroui, 2020a, b). It is important to notice that 

precipitation has a greater negative effect on agriculture and 

fishery outputs in the long term than in the short term. This 

asserts that over time, this factor will have a more harmful impact 

on aggregate agriculture and fishery production in Ivory Coast and 

constitutes a serious threat to agriculture in the country. Our 
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results, in line with Warsame et al. (2022), also concluded a 

beneficial effect of rainfall on livestock production in both runs. In 

other words, when rainfall rises by 10%, livestock production 

improves by 7.11% in the short term and 9.29% in the long run. 

These findings make sense, considering that rainfall is a key factor 

in raising livestock and producing milk and meat. Grazing animals 

benefit from rainfall because it encourages the growth of shrubs and 

grasses used as pasture by livestock. Our findings further reveal an 

insignificant favorable effect of rainfall on crop production in Ivory 

Coast in both runs. This result is similar to that of N’Zué (2018), who 

found a positive effect of precipitation on crop yield in Ivory Coast. 

The estimated results indicated that the role of CO2 is positive on 

agriculture and crop production in both run estimations. It means 

that a 1% rise in CO2 will lead to a 0.63% and 0.14% increase in 

agriculture over the long and short run, respectively. Likewise, a 

1.16% long-run and 0.94% short-term increase in crop production 

are related to a one percent rise in CO2. Our conclusions are in line 

with those of studies by Chandio et al. (2020a, c), Rehman et al. 

(2020), Ntiamoah et al. (2022), and Pickson et al. (2022). The 

findings further demonstrate that CO2 does not impact livestock 

production in Ivory Coast. This result is consistent, to some extent, 

with that of Warsame et al. (2022), who found that in Somalia, CO2 

had no long-term effect on livestock production but had a positive 

impact in the short run. According to our results, CO2 has a positive 

long-term influence on fishery production but no effect in the 

short run. This means that over time, fish production will enhance 

by 3.45% for every increase in CO2. In Bangladesh, Begum et al. 

(2022) discovered a short-term negative impact of CO2 on fishery 

production but no impact in the long run. With a carbon emissions 

per capita ranking of 103 out of 221 nations, Ivory Coast is among 

the World’s lowest polluters (Globalcarbonatlas, 2022). This could 

explain the short- and long-run non-association between CO2 and 

livestock production and the short-run non-association between 

CO2 and fishery production. 

Domestic credit is found to have a beneficial influence on 

agriculture and its subsectors in both runs, except for crop and 

livestock production, where the effect is negative and 

insignificant in the short run. In other words, a one percent 

increment in domestic credit leads to 0.57% long-term and 

0.12% short-term improvements in agriculture production, a 

0.55% long-term improvement in crop production, a 0.39% long-

term improvement in livestock production, as well as a 1.43% long-

term and 1.34% short-term improvements in fishery production. 

The results on the favorable effect of domestic credit on agriculture 

and its subsectors are logical and consistent with studies by Chandio 

et al. (2021a) and Chandio et al. (2022a, b), who suggested that 

domestic credit has a positive association with agricultural output. 

Domestic financing ensures that agricultural inputs are purchased 

and distributed efficiently, increasing productivity (Awunyo-Vitor, 

2017; Belete, 2020; Melkani et al., 2021). 

Surprisingly, gross capital formation negatively impacts agriculture 

and its subsectors in Ivory Coast, except crop production, where it 

only has an insignificant positive effect in the short run. The same is 

true for fishery production, which only had a significant favorable 

impact in the short term. This signifies that a 1% increase in gross 

capital formation has a negative long-term impact of 0.27% and a 

short-term effect of 0.06% on agricultural output, a long-term 

negative influence of 0.63% on crop production, a long-term 

detrimental impact of 0.80% and short-term effect of 0.34% on 

livestock production, and a long-term negative influence of 2.75% 

on fishery production. Similarly, a one percent rise in gross capital 

formation has a short-term positive effect of 0.31% on fishery 

production. Chandio et al. (2022a) state that capital formation 

provides infrastructure for agricultural production, which helps 

increase agricultural productivity. However, our findings on the 

negative impact of gross capital formation on agriculture and its 

subsectors in Ivory Coast are similar to the results of N’Zué (2018), 

who found that Ivory Coast’s gross capital formation adversely 

affected the value added to agricultural products. This makes sense, 

especially if investments are made outside the agricultural sector to 

enable the processing of agricultural products (N’Zué, 2018). Under 

such conditions, the industrial sector’s contribution to GDP will rise 

while agricultural value added will fall.  

The coefficients of determination (R2) of 0.99 in all models 

revealed that the selected independent variables explain 99% of 

variations in the regressand. The probability values of F-statistics 

in all models, which are lower than 5%, proved the goodness of fit 

of the models. 

Table 7. Long- and short-run estimates for model 1. 

Dependent Variable: lnAGDP; ARDL (2, 3, 3, 3, 3, 3) selected based on SC 
Variables Coefficient Std. Error t-Statistic Probability 
Long-run estimates 
lnTEMP 6.714831 2.34396 2.864737 0.0457 
lnRF -0.3977 0.114313 -3.47904 0.0254 
lnCO2 0.629844 0.153996 4.089987 0.015 
lnDC 0.569775 0.021045 27.07392 0 
lnGCF -0.27452 0.128118 -2.14268 0.0988 
Short-run estimates 
D (lnAGDP (-1)) 0.706359 0.065422 10.79704 0.0004 
D (lnTEMP) 0.682386 0.566732 1.204072 0.2949 
D (lnTEMP (-1)) -2.86108 0.69714 -4.10403 0.0148 
D (lnTEMP (-2)) -4.40149 0.622983 -7.06518 0.0021 
D (lnRF) -0.14055 0.056941 -2.46839 0.0691 
D (lnRF (-1)) 0.546995 0.051612 10.59824 0.0004 
D (lnRF (-2)) 0.452129 0.043145 10.47928 0.0005 
D (lnCO2) 0.144826 0.063532 2.279559 0.0848 
D (lnCO2 (-1)) -0.64787 0.07622 -8.49999 0.0011 
D (lnCO2 (-2)) -0.55707 0.052616 -10.5874 0.0005 
D (lnDC) 0.124982 0.039893 3.132944 0.0351 
D (lnDC (-1)) -1.35387 0.090604 -14.9426 0.0001 
D (lnDC (-2)) -0.69846 0.06092 -11.4652 0.0003 
D (lnGCF) -0.06073 0.021475 -2.82777 0.0475 
D (lnGCF (-1)) 0.223605 0.027306 8.188978 0.0012 
D (lnGCF (-2)) 0.067309 0.034288 1.963074 0.1211 
ECM (-1) -1.88118 0.104714 -17.965 0.0001 
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R-squared 0.99908 Adjusted R-squared 0.994023 
F-statistic 197.5447 Prob(F-statistic) 0.000055 
Durbin-Watson statistic 1.624689    

Table 8. Long- and short-run estimates for model 2. 

Dependent Variable: lnCGDP; ARDL (3, 3, 3, 3, 3, 3) selected based on SC 
Variables Coefficient Std. Error t-Statistic Probability 
Long-run estimates 
lnTEMP 14.13255 3.100919 4.557537 0.0198 
lnRF 0.033084 0.174433 0.189666 0.8617 
lnCO2 1.160506 0.213525 5.434986 0.0122 
lnDC 0.548811 0.032459 16.90783 0.0005 
lnGCF -0.62903 0.183585 -3.42639 0.0416 
Short-run estimates 
D (lnCGDP (-1)) 1.025027 0.143117 7.162134 0.0056 
D (lnCGDP (-2)) 0.148439 0.079723 1.861938 0.1595 
D (lnTEMP) 5.782941 0.992999 5.823712 0.0101 
D (lnTEMP (-1)) -7.03044 1.583659 -4.43936 0.0213 
D (lnTEMP (-2)) -4.39394 1.025727 -4.28373 0.0234 
D (lnRF) 0.075637 0.070667 1.07032 0.3629 
D (lnRF (-1)) 0.348275 0.076391 4.559099 0.0198 
D (lnRF (-2)) 0.492951 0.060216 8.186419 0.0038 
D (lnCO2) 0.944941 0.135863 6.955098 0.0061 
D (lnCO2 (-1)) -0.25935 0.106354 -2.43851 0.0926 
D (lnCO2 (-2)) -0.25891 0.067379 -3.84258 0.0311 
D (lnDC) -0.01546 0.077733 -0.19883 0.8551 
D (lnDC (-1)) -1.29684 0.167067 -7.7624 0.0044 
D (lnDC (-2)) -0.74268 0.103285 -7.19057 0.0055 
D (lnGCF) 0.000861 0.026532 0.032461 0.9761 
D (lnGCF (-1)) 0.693244 0.086355 8.027799 0.004 
D (lnGCF (-2)) 0.206585 0.055464 3.724661 0.0337 
ECM (-1) -1.79384 0.191854 -9.35003 0.0026 
R-squared 0.998797 Prob(F-statistic) 0.001255 
Adjusted R-squared 0.98957 Durbin-Watson statistic 2.726696 
F-statistic 108.2551    

Table 9. Long- and short-run estimates for model 3. 

Dependent Variable: lnLGDP; ARDL (2, 3, 1, 0, 2, 2) selected based on SC 
Variables Coefficient Std. Error t-Statistic Probability 
Long-run estimates 
lnTEMP 17.18104 4.125391 4.164705 0.0016 
lnRF 0.929405 0.234049 3.970984 0.0022 
lnCO2 0.227623 0.224504 1.013893 0.3324 
lnDC 0.38718 0.041061 9.429367 0 
lnGCF -0.80201 0.158167 -5.07066 0.0004 
Short-run estimates 
D (lnLGDP (-1)) 1.335918 0.225627 5.920922 0.0001 
D (lnTEMP) 8.973517 2.379636 3.770962 0.0031 
D (lnTEMP (-1)) -18.4332 4.039379 -4.56338 0.0008 
D (lnTEMP (-2)) -15.4333 3.207937 -4.81097 0.0005 
D (lnRF) 0.711252 0.236161 3.011731 0.0118 
D (lnDC) -0.33749 0.221416 -1.52425 0.1557 
D (lnDC (-1)) -1.92866 0.282354 -6.83065 0 
D (lnGCF) -0.33743 0.116641 -2.89292 0.0146 
D (lnGCF (-1)) 0.661145 0.143711 4.600523 0.0008 
ECM (-1) -1.93897 0.288692 -6.71641 0 
R-squared 0.931943 Prob(F-statistic) 0.000231 
Adjusted R-squared 0.839138 Durbin-Watson statistic 2.042413 
F-statistic 10.04197  

Table 10. Long- and short-run estimates for model 4. 

Dependent Variable: lnFGDP 
ARDL (3, 3, 3, 2, 3, 3) selected based on SC 
Variables Coefficient Std. Error t-Statistic Probability 
Long-run estimates 
lnTEMP 19.62388 11.74087 1.671415 0.17 
lnRF -5.95364 0.905753 -6.57315 0.0028 
lnCO2 3.452463 0.977458 3.532082 0.0242 
lnDC 1.432674 0.162748 8.80301 0.0009 
lnGCF -2.75323 0.706502 -3.89699 0.0176 
Short-run estimates 
D (lnFGDP (-1)) 0.249955 0.065021 3.844219 0.0184 
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D (lnFGDP (-2)) 0.202866 0.057115 3.551873 0.0238 
D (lnTEMP) -20.9235 3.300319 -6.33983 0.0032 
D (lnTEMP (-1)) -1.60106 3.494273 -0.4582 0.6706 
D (lnTEMP (-2)) -9.2054 3.267822 -2.81698 0.048 
D (lnRF) -3.16397 0.32739 -9.66421 0.0006 
D (lnRF (-1)) 2.639046 0.370548 7.122016 0.0021 
D (lnRF (-2)) 2.64416 0.303267 8.718918 0.001 
D (lnCO2) -0.07113 0.379814 -0.18728 0.8606 
D (lnCO2 (-1)) -0.90883 0.268375 -3.38642 0.0276 
D (lnDC) 1.340006 0.179127 7.480746 0.0017 
D (lnDC (-1)) -2.46429 0.181165 -13.6025 0.0002 
D (lnDC (-2)) -2.08368 0.274928 -7.579 0.0016 
D (lnGCF) 0.310128 0.10557 2.937646 0.0425 
D (lnGCF (-1)) 3.455629 0.255672 13.51589 0.0002 
D (lnGCF (-2)) 1.574555 0.255533 6.161852 0.0035 
ECM (-1) -1.07927 0.070052 -15.4067 0.0001 
R-squared 0.994933 Prob(F-statistic) 0.001638 
Adjusted R-squared 0.967065 Durbin-Watson statistic 2.041151 
F-statistic 35.70181    
 

Robustness Tests 

We applied the Johansen cointegration method to check the 

robustness of the outcomes of the ARDL bounds test. The results in 

Table 11 revealed at least one cointegration equation (CE) in all 

models. Additionally, we utilize the FMOLS, DOLS, and CCR 

regression models to validate the estimated coefficients of the ARDL 

method. Table 12 displays the estimated long-term coefficients of 

the three regression models, all comparable to the long-term 

estimates produced using the ARDL approach. The results then 

verified the accuracy of the predictions of the ARDL model. 

 

Diagnostic and Stability Tests 

Several diagnostic and stability tests have been applied to the 

estimated models to investigate the accuracy and consistency of 

the predictions. The probabilities of the statistics of the Ramsey 

RESET test for error specification, Jarque-Bera test for normality, 

Breusch-Godfrey LM test for serial correlation, and Breusch-Pagan 

Godfrey test for heteroscedasticity are all greater than 5% in all 

models (Table 12). This demonstrates that the residuals are 

normally distributed, and our models are free from serial 

correlation, heteroscedasticity, and error specification issues. In 

addition, we checked the structural stability of our models by 

employing the cumulative sum (CUSUM) and cumulative sum of 

squares (CUSUMQ) tests. Figures 3, 4, 5, and 6 show the graphical 

representations of both tests for each model. The CUSUM and 

CUSUMQ for models 2, 3, and 4 fall within the 5% bounds limits, 

indicating that models 2, 3, and 4 are all stable. In the case of model 

one, the graph of the CUSUM falls inside the 5% critical limits. 

However, the CUSUMQ plot is also within the 5% bound limits 

most of the time. However, it must fall within bounds limits at a 

10% significance level. Considering this, we deduced that our 

models have no diagnostic issues. 

Table 11. Results of the Johansen cointegration test. 

N0 of CE(s) Trace statistic value Max-Eigen statistic value 
Model 1   
None  158.5340*** 58.80063*** 
At most 1  99.73337*** 53.03891*** 
At most 2 46.69446 19.66432 
At most 3 27.03014 17.43995 
At most 4 9.590197 9.450717 
At most 5 0.139480 0.139480 
Model 2   
None  161.4787*** 64.72229*** 
At most 1  96.75644*** 48.59734*** 
At most 2  48.15910** 20.45232 
At most 3  27.70678 17.63730 
At most 4 10.06948 9.994223 
At most 5 0.075253 0.075253 
Model 3   
None  163.0825*** 68.82194*** 
At most 1  94.26059*** 36.02966** 
At most 2 58.23094*** 23.75303 
At most 3 34.47791** 21.82333** 
At most 4 12.65458 11.41200 
At most 5 1.242576 1.242576 
Model 4   
None  131.6143*** 48.14200*** 
At most 1  83.47226*** 37.26361** 
At most 2  46.20865 21.75320 
At most 3  24.45545 14.57301 
At most 4 9.882435 7.783587 
At most 5 2.098848 2.098848 

Note: ** and *** indicate the rejection of no cointegration at 5% and 1% significance levels, respectively. 

 



    Journal of Economic Impact 5 (2) 2023. 132-145 

 
142 

Table 12. Diagnostic tests. 

Diagnostic and stability tests Statistics Probability 

Model 1   

Jarque-Bera normality test 0.9662 0.6168 
Breusch-Godfrey LM test for serial 
correlation 

1.272608 0.44 

Breusch-Pagan Godfrey test for 
heteroskedasticity  

25.45515 0.2758 

Ramsey RESET test 3.343764 0.1649 
CUSUM Stable  
CUSUMQ Stable   
Model 2 
Jarque-Bera normality test 0.7016 0.7041 
Breusch-Godfrey LM test for serial 
correlation 

1.558949 0.4928 

Breusch-Pagan Godfrey test for 
heteroskedasticity  

21.2973 0.5629 

Ramsey RESET test 0.005097 0.9496 
CUSUM Stable  
CUSUMQ Stable   

Model 3 
Jarque-Bera normality test 0.7155 0.6992 
Breusch-Godfrey LM test for serial 
correlation 

0.224386 0.8033 

Breusch-Pagan Godfrey test for 
heteroskedasticity  

11.21582 0.7372 

Ramsey RESET test 4.932151 0.0506 
CUSUM Stable  
CUSUMQ Stable   
Model 4 
Jarque-Bera normality test 2.0149 0.3651 
Breusch-Godfrey LM test for serial 
correlation 

9.804171 0.0926 

Breusch-Pagan Godfrey test for 
heteroskedasticity  

19.08231 0.6402 

Ramsey RESET test 2.184882 0.2359 
CUSUM Stable  
CUSUMQ Stable   

 

  

 

 

 

Figure 3. Graphs of CUSUM and CUSUMQ for model 1. 

  

 

 

 

 

 
Figure 4. Graphs of CUSUM and CUSUMQ for model 2. 

  

 

 
 

 

Figure 5. Graphs of CUSUM and CUSUMQ for model 3. 
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Figure 6. Graphs of CUSUM and CUSUMQ for model 4. 

 

CONCLUSION AND POLICY IMPLICATIONS 

Applying the ARDL bounds testing approach, this article examines 

the short- and long-term effects of temperature, rainfall, CO2, 

domestic credit, and gross capital formation on agriculture 

production and its subsectors from 1990 to 2019 in Ivory Coast. 

The Johansen cointegration test is used to check the robustness of 

the long-term cointegration between the variables under 

consideration. Considering agriculture at an aggregate level, the 

ARDL findings indicate a positive and significant impact of 

temperature in Ivory Coast in the long run. Rainfall has a negative 

and significant impact on agriculture over the long run. Regarding 

CO2, a positive and significant impact is found in the long term. Our 

time series analysis shows a beneficial temperature impact for 

crop production in both runs. The impact of CO2 on crop 

production is positive in both runs. Regarding livestock, our time 

series analysis reveals that temperature positively impacts Ivory 

Coast’s production in both runs. Rainfall has a positive long-term 

impact on Ivory Coast’s livestock production. The time series long- 

and short-run dynamics on fishery production indicate a negative 

temperature impact in the short run. Rainfall is found to have a 

negative impact on it in both runs. CO2 positively affects Ivory 

Coast’s fishery production in the long run. The results confirm the 

dependence of the livestock subsector on rainfall. Rainfall 

negatively impacts the agriculture sector and the fishery 

subsector. Another important result is the negative effect of gross 

capital formation on agriculture and its subsectors. Therefore, the 

government should invest more in agricultural infrastructure, 

promote and facilitate the adoption of irrigation systems, promote 

the adoption of Climate-Smart Agriculture Practices (CSA), and 

improve grazing and water management for livestock. 
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