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Abstract

We start the problem of atractivity of solutions for fractional evolution equation. We obtain
some interesting results of mild solution for fractional evolution system with order β ∈ (1, 2) in
Banach space. There was a lot of circumstances for existence of universal attractive solution.
We explain the Cauchy problems in these cases for which the semi-group is compact as well
as non compact. Our results basically show some features of solution. We proceed the new
representation of solution operators, by Laplace heat (is the new concept of light solution for
objective equation), and Mainardi’s Wright-type function then we go ahead to set up a new
compact solution operators that contract results at the point when the sine family is compact.

Keywords: Fractional evolution equation, mild solution, Mainardi’s Wright-type
function attractivity, Riemann-Liuoville derivative, Caputo derivative.
MSC 2010: Primary 26A33; Secondary 34K37, 37L05, 47J35.

1 Introduction

Fractional differential equation has achieved fairly significance because of their applications in dif-

ferent sciences for example, Chemistry, Engineering, Mechanics, and Physics. In recent over the

year, there has been a major break through, and partial differential equation involving fractional

derivative. The existence theory of solutions for fractional evolution equation has been investigated

intensively by numerous researchers like Kim [1], Podlubny [2], Kilbas [3], Zhou [4, 5, 6], Wang [7],

Bazhlekova [8], Zacher [9], Zhou and Miller [10, 11]. They examine the attractivity of solution for

Cauchy problems.
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There was a lot of circumstances for the existence of universal attractive solutions. It proved that

all solutions are uniformly locally attracting. Lately, Chen [12], Losada [13], Tarasov [14] Banas

and O’Regan [15] examine the attractivity of solutions for fractional ordinary differential equations.

Anyway the finest thing of our insight there are relatively few results on the attractivity of solution

for fractional evolution equation in liberal arts. Some authors S.Abbas, M. Benchohra [16], estab-

lish the result of attractivity of a coupled fractional Riemann-Liouville-Voltera-Stieltjies multi-delay

partial integral system. Then authors shows that in coupled fraction the solutions are uniformly

globally attractive. The existence of mild solution for integro-differential and fractional differential

equation of order β ∈ (1, 2) has attracted much attention in recent years.

Shu et al. [17] examine the existence of mild solution for non-local fractional differential calculation

based on some sectorial operator. In this paper we discuss the existence and uniqueness of frac-

tional theoretical Cauchy problem with order β ∈ (1, 2) . There are several ways to find fractional

derivatives such as Raimann-Liouville, Caputo, Wayl, Hadmard, Grunwald-Letnikov.

Different authors have expressed their views on this topic in different ways. Due to which a rev-

olution took place in the field of fractional differential equation. Continuing this process, we will

work on the Caputo derivative and prove that the mild solution using initial value problems. Then

we will create some assumptions which prove some important results. Consider Cauchy problem of

fractional evolution equation with Caputo derivative:{
CDβ

0+y(ν) = By(ν) + f(ν, y(ν)), ν ∈ [0,∞),

y(0) = y0, y′(0) = y1. 1 < β < 2.
(1)

Where CDβ
0+ is Caputo fractional derivative of order β, B is the infinitesimal generator of C0-

semigroup of bounded linear operator {R(ν)}ν≥0 in Banach space Y and the time ν > 0, f :

[0,∞) × Y → Y is a particular function fulfills all assumptions, and y0 is the component of the

Banach space Y .

We establish some sufficient condition for the universal attractivity for mild solution in the study of

semi-group is compact or non-compact. These results disclose the features of the solution for frac-

tional evolution equation with Riemann-Liouville derivative. Since Mainardi’s wright-type function

is well-defined for β ∈ (0, 1), how to define mild solution utilizing this function turns out to be more

complicated and challenging. However by a cautious investigation we display another representation

of solution operator by proposed work and another idea of mild solution is given. Then again we

build up another new compact consequence of the solution operator at the point when the sine

family is compact.
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2 Preliminaries

In this part, we partially recall some concept of integration and derivative and then giving some

theorems which are useful in the next section. Let Y be a Banach space with the | · |. We indicate

Lb(Y,Z) are the interval of all bounded linear operators from Y to Z provided along with the

norm ‖ · ‖Lb(Y,Z). Suppose that Lb(Y ) : Y → Y . Suppose that C(H,Y ) be the spaces of all

continuous function from H to Y equipped with super norm ‖y‖ = supν∈H |y(ν)|. If B : Y → Y is

a linear operator, we indicate the resolvent set of B by ρ(B) and the resolvent of B by Q(λ,B) =

(λI −B)−1 ∈ Lb(Y ).

The fractional integral of order β ∈ R+ with zero lower limit for a function u is defined as

Iβ0+u(ν) = gβ(ν) ∗ u(ν) =
1

Γ(β)

∫ ν

0
(ν − s)β−1u(s)ds, ν > 0,

with the ∗ denote the convolution

gβ(ν) =
νβ−1

Γ(β)
,

where Γ is the regular gamma function. Just in case β = 0 we set g0(ν) = ρ(ν), the Dirac measure

is converge at origin.

The RL-derivative of order β ∈ R+ with zero lower limit for a function u : [0,∞)→ R is defined by

LDβ
0+u(ν) =

dm

dνm
(gm−β ∗ s)(ν), ν > 0, m− 1 < β < m,

and the similar Caputo’s derivative of order β ∈ R+ with zero lower limit for a function

u : [0,∞)→ R is defined by

CDβ
0+u(ν) =L Dβ

0+

(
u(ν)−

m−1∑
k=0

u(k)(0)

k!
νk
)
, ν > 0, m− 1 < β < m.

The Wright function Mβ(θ) is defined by

Mβ(θ) =
∞∑
m=1

(−θ)m−1

(m− 1)!Γ(1− βm)
,

It is realized that Mβ(θ) satisfy the following equality:∫ ∞
0

θδMβ(θ)dθ =
Γ(1 + ρ)

Γ(1 + βρ)
, ρ ≥ 0,

we discuss some definition of mild solution

Definition 2.1. (see[18]): According to the mild solution of the Cauchy problem 1, we imply that
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the function y ∈ C([0,∞), Y ) satisfies

y(ν) = νβ−1Pβ(ν)y0 +

∫ ν

0
(ν − s)β−1Pβ(ν − s)f (s, y(s))ds, ν > 0,

where

Pβ(ν) =

∫ ∞
0

βMβ(θ)Q(νβθ)dθ.

Definition 2.2. : The mild solution y(ν) of the Cauchy problem 1 is attractive if y(ν) will in

general to zero as ν →∞.
Assume that B is the infinitesimal generator of a C0-semigroup {R(ν)}ν≥0 of equivalently bounded

linear operators on Banach space Y . It implies that there exist M ≥ 1 so that

M = sup
ν∈[0,∞)

‖R(ν)‖W (Y ) <∞,

where W (Y ) be the space of all bounded linear operators from Y to Y with the norm

‖R(ν)‖W (Y ) = sup{|R(y)| : |y| = 1}, where R ∈W (Y ) and y ∈ Y.

Proposition 2.1. (see[18]) : For some fixed ν > 0, Pβ(ν) is bounded and linear operator, so that,

for some y ∈ Y ,

|Pβ(ν)y| ≤ M

Γ(β)
|y|.

Proposition 2.2. (see[18]) : {Pβ(ν)}ν>0 is strongly continuous, which implies that, ∀ y ∈ Y and

ν ′′ > ν ′ > 0, we get

|Pβ(ν ′′)y − Pβ(ν ′)y| → 0, ν ′′ → ν ′.

Proposition 2.3. (see[18]) : Suppose that {R(ν)}ν>0 is compact operator. At that point {Pβ(ν)}ν>0

is also compact operator. Suppose that Y be a real Banach space, I = [0,∞) :

D =

{
x ∈ C(H,Y ) : lim

x→∞

|x(ν)|
1 + ν

= 0

}
,

with the norm ‖x‖ = supν∈[0,∞)
|x(ν)|
(1+ν) . It is not difficult to see that (D, ‖ · ‖) is a Banach space.

Lemma 2.4. (see[[19], Theorem 1]) The set I ⊂ C0([0,∞), Y ) is relatively compact as long as the

following condition holds:

(i) For some c > 0, the function in I is equi-continuous on [0, c].

(ii) For some ν ∈ [0,∞), G(y) = {y(ν) : y ∈ G} is relatively compact in Y .

(iii) limt→∞ |y(ν)| = 0 is uniformly for y ∈ I.

H1 : |f (ν, y)| ≤ Lν−β for y ∈ C((0,∞), Y ) and ν ∈ (0,∞), where 0 ≤ L, αk < β < 1.
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Lemma 2.5. (see[20]) : consider 0 < βk < β < 1, we can select α > 0 sufficiently compact, thus

α− β + βk < 0 and α+ βk − γ < 0.

Let T > 0 be sufficiently sizeable, thus

M(y0)T
α−β+βk +M(y1)T

α−β+βk +
MLΓ(βk)Γ(1− β)

Γ(βk − β + 1)
Tα+βk−γ ≤ 1. (2)

Define a set ω given below

ω = {y(ν) : y ∈ C([0,∞), Y ), |y(ν)| ≤ ν−γ , ν ≥ T}.

It is not difficult to show that ω 6= Φ, and ω is a bounded, closed, and convex subset of C0((0,∞), Y ).

Definition 2.3. (see[21]) : we first define the Mittag-Leffler function Eµ,ν(u) and Mainardi’s

Wright-type function M%(u),

Eµ,ν(u) =
∞∑
m=0

um

Γ(µm+ ν)
, 0 < µ, ν, u ∈ C,

and

M%(u) =

∞∑
n=0

(−u)m

m!Γ(1− %(m+ 1))
, % ∈ (0, 1), u ∈ C.

Integrating step-by-step into Mittag-Leffler function∫ ν

0
Eµ,ν(aνµ)νν−1dν = ννEµ,ν+1(aν

µ), 0 < µ, ν, a ∈ R.

Lemma 2.6. (see[21]) : For any fixed y ≥ 0, and for some y ∈ Y , the subsequent evolution are

valid

|Cβ(ν)y|≤M |y|, |Kβ(ν)y| ≤M |y|ν, |Pβ(ν)y| ≤ M

Γ(2β)
|y|νβ.

Lemma 2.7. (see[21]) : For some ν > 0,the Mainardi’s Wright-type function has the properties

M%(ν) ≥ 0,

∫ ∞
0

θδM%(θ)dη =
Γ(1 + ρ)

Γ(1 + %ρ)
, − 1 < ρ <∞,

and for u ∈ C, µ ∈ (0, 1)

Eµ,1(−u) =

∫ ∞
0

Mµ(θ)e−uθdθ, Eµ,µ(−u) =

∫ ∞
0

µθMµ(θ)e−uθdθ.

We assume that B is an infinitesimal generator of a strongly continuous cosine family of equivalently

bounded linear operator {C(ν)}0<ν in Banach space Y , there exist 1 ≤M so that

‖C(ν)‖Lb(Y ) ≤M, 0 ≥ ν. For the purpose of simplification, we generally place β = β
2 for β ∈ (1, 2).

We examine the linear nonhomogeneous fractional evolution system the system is identical for the
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following integral {
CDβ

0+y(ν) = By(ν) + f(ν, y(ν)), ν ∈ [0,∞),

y(0) = y0, y′(0) = y1, 1 < β < 2.

The above system is equal to the following integral

y(ν) = y0 + y1ν +
1

Γ(β)

∫ ν

0
(ν − s)β−1[By(s) + f (s)]ds, ν ∈ [0,∞), (3)

provided the integral 3 exist.

Theorem 2.8. If 3 holds, then

y(ν) = Cβ(ν)y0 +Kβ(ν)y1 +

∫ ν

0
(ν − s)β−1Pβ(ν − s)f(s)ds, ν ∈ [0,∞),

where

Cβ(ν) =

∫ ∞
0

Mβ(θ)C(νβθ)dθ, Kβ(ν) =

∫ ν

0
Cβ(s)ds, Pβ(ν) =

∫ ∞
0

βθMβ(θ)S(νβθ)dθ

Proof. Let λ > 0

ξ(λ) =

∫ ∞
0

e−λsy(s)ds, µ(λ) =

∫ ∞
0

e−λsf(s, y(s))ds,

apply Laplace transformation on 3

ξ(λ) = λβ−1(λβ −A)−1y0 + λβ−2(λβ −A)−1y1 + (λβ −A)−1µ(λ),

for ν ≤ 0

ξ(λ) = λ
β
2
−1
∫ ∞
0

e−λ
β
2 νC(ν)y0dν + λ−1λ

β
2
−1
∫ ∞
0

e−λ
β
2 νC(ν)y1dν +

∫ ∞
0

e−λ
β
2 νS(ν)µ(ν)dν.

Let

Φβ(θ) =
β

θβ+1
Mβ(θ−β), θ∈ (0,∞),

and its Laplace transform is given by∫ ∞
0

e−λθΦβ(θ)dθ = e−λ
β
, β ∈ (

1

2
, 1)
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λβ−1
∫ ∞
0

e−λ
βνC(ν)y0dν =

∫ ∞
0

β(λν)β−1e−(λν)
β
C(νβ)y0dν

=

∫ ∞
0
− 1

λ

d

dν

(∫ ∞
0

e−λνθΦβ(θ)dθ

)
C(νβ)y0dν

=

∫ ∞
0

∫ ∞
0

−λθ
−λ

e−λνθΦβ(θ)C(νβ)y0dν

=

∫ ∞
0

∫ ∞
0

θΦβ(θ)e−λνθC(νβ)y0dνdθ (4)

=

∫ ∞
0

∫ ∞
0

Φβ(θ)e−λνC(
νβ

θβ
)y0dθdν

=

∫ ∞
0

e−λν
[ ∫ ∞

0
Φβ(θ)C(

νβ

θβ
)y0

]
dθdν

= L
[ ∫ ∞

0
Mβ(θ)C(νβθ)y0dθ

]
(λ)

= L[Cβ(ν)y0](λ)

Since L[g1(ν)](λ) = λ−1 according to Laplace Convolution Theorem, we get

λ−1λβ−1
∫ ∞
0

e−λ
βνC(ν)y1dν = L[g1(ν)](λ) ∗ L[Cβ(ν)y1](λ)

= L[(g1 ∗ Cβ)(ν)y1](λ). (5)

Similarly ∫ ∞
0

e−λ
βνS(ν)µ(λ)dν =

∫ ∞
0

βνβ−1e(−λν)
β
S(νβ)µ(λ)dν

=

∫ ∞
0

∫ ∞
0

βνβ−1Φβ(θ)e−λνθS(νβ)µ(λ)dνdθ

=

∫ ∞
0

∫ ∞
0

β
νβ−1

θβ
Φβ(θ)S(

νβ

θβ
)µ(λ)dνdθ (6)

∫ ∞
0

e−λ
βνS(ν)µ(λ)dν =

∫ ∞
0

e−λν
[ ∫ ∞

0
β
νβ−1

θβ
Φβ(θ)S(

νβ

θβ
)µ(λ)dθ

]
dν

= L
[ ∫ ∞

0
βνβ−1Mβ(θ)S(νβθ)dθ

]
(λ).L[f(ν)](λ)

= L
[ ∫ ν

0
(ν − s)β−1Pβ(ν − s)f(s)ds

]
(λ).

Combining equation 4, 5 and 6, we have

y(ν) = Cβ(ν)y0 +

∫ ν

0
Cβ(s)y1ds+

∫ ν

0
(ν − s)β−1Pβ(ν − s)f(s, y(s))ds.

Thus, the proof is complete.

Lemma 2.9. Assume that (H1) hold. Then {Zy : y ∈ ω} is equi-continuous and limx→∞|(Zy)(ν)| =
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0 uniformly for y ∈ ω.

Proof. Consider −β(1− k) < 0 and βk − γ < 0 there exist T1 > T in such a way that

For any y ∈ ω and T1 < ν1, ν2, we have

|(Zy)(ν2)− (Zy)(ν1)| ≤
∫ ν2

0
(ν2 − s)β−1|Pβ(ν2 − s)f(s, y(s))|ds

+

∫ ν1

0
(ν1 − s)β−1|Pβ(ν1 − s)f(s, y(s))|ds,

Furthermore for 0 < ν1 < ν2 ≤ T1 Lebesgue Dominated Convergence Theorem, we get

|(Zy)(ν2)− (Zy)(ν1)| ≤
∣∣∣∣ ∫ ν2

0
(ν2 − s)β−1Pβ(ν2 − s)f(s, y(s))ds−

∫ ν1

0
(ν1 − s)β−1Pβ(ν1 − s)f(s, y(s))

∣∣∣∣
≤

∣∣∣∣ ∫ ν1

0
((ν2 − s)β−1 − (ν1 − s)β−1)Pβ(ν2 − s)f(s, y(s))ds

∣∣∣∣
+

∣∣∣∣ ∫ ν2

ν1

(ν2 − s)β−1Pβ(ν2 − s)f(s, y(s))ds

∣∣∣∣
+

∣∣∣∣ ∫ ν1

0
(ν1 − s)β−1

(
Pβ(ν2 − s)− Pβ(ν1 − s))f(s, y(s)

)
ds

∣∣∣∣
≤ Msupν∈[0,T1]|f(ν, y(ν))|

∫ ν1

0

[
(ν1 − s)βk−1 − (ν2 − s)βk−1

]
ds

+ Msupν∈[0,T1]|f(ν, y(ν))|
∫ ν2

ν1

(ν2 − s)βk−1ds

+

∫ ν1

0
(ν1 − s)β−1

∣∣∣∣(Pβ(ν2 − s)− Pβ(ν1 − s)
)
f(s, y(s))

∣∣∣∣ds
≤ M

βk
sup

ν∈[0,T1]
|f(ν, y(ν))|

[
νβk1 − ν

βk
2 + (ν2 − ν1)βk

]
+

M

βk
sup

ν∈[0,T1]
|f(ν, y(ν))|(ν2 − ν1)βk

+

∫ ν1

0
(ν1 − s)β−1

∣∣∣∣Pβ(ν2 − s)− Pβ(ν1 − s)f(s, y(s))

∣∣∣∣ds,
the above equation approaches to 0 as ν2 → ν1.

If 0 = ν1 < ν2 ≤ T1 we have (Zy)(ν2)→ y0 = (Fy)(0) as ν2 → 0

Therefore collaborate the above contentions, it is obvious that the family of function {Zy : y ∈ ω}
is equi-continuous. It remains to check that limν→0|(Zy)(ν)| = 0 is uniformly for y ∈ ω. We get

|(Zy)(ν)| ≤ |Cβ(ν)y0|+
∫ ν

0
Cβ(s)y1ds+

∫ ν

0
(ν − s)βk−1

∣∣Pβ(ν − s)f(s, y(s))
∣∣ds

|(Zy)(ν)| ≤ M |y0|+M |y1|ν +
MLΓ(βk)Γ(1− β)

Γ(βk − β + 1)
νβk−β −→ 0 as ν −→∞,
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all the above discussion reveal that

lim
ν→∞

|(Zy)(ν)| = 0 is uniform for y ∈ s.

Thus, the theorem is proved.

Lemma 2.10. Suppose that (H1) hold. At that point Z maps ω into ω and Z is continuous in ω.

Proof. Case I :

Z maps ω into ω we know that Zy ∈ ([0,∞), Y ). Then again by utilizing condition H1 we get

|(Zy)(ν)| ≤ |Cβ(ν)y0|+
∫ ν

0
Cβ(s)y1ds+

∫ ν

0
(ν − s)β−1|Pβ(ν − s)f(s, y(s))|ds

≤
(
να|Cβ(ν)y0|+ να

∫ ν

0
Cβ(s)y1ds+ να

∫ ν

0
(ν − s)β−1|Pβ(ν − s)f(s, y(s))|ds

)
ν−α

≤
(
M |y0|να−β+βk +M |y1|να−β+βk +MLνα

∫ ν

0
(ν − s)βk−1s−γds

)
t−α

≤
(
M |y0|να−β+βk +M |y1|να−β+βk +

MLΓ(βk)Γ(1− β)

Γ(βk − α+ 1)
να+βk−γ

)
ν−α

From the inequality 2, we get

|(Zy)(ν)| ≤
(
M |y0|Tα−β+βk +M |y1|Tα−β+βk +

MLΓ(βk)(1− β)

Γ(βk − β + 1)
Tα+βk−γ

)
ν−α

≤ ν−α, ν ≥ T.

Which implies that Zω ⊂ ω.
Case II :

Z is continuous in ω for any yn, y ∈ ω, n = 1, 2, ..... with limx→∞yn = y, we will indicate that

Zyn → Zy as n→∞. For all ε > 0 there exist T1 > T.

In such a way that

MLΓ(βk)Γ(1− β)

Γ(βk − β + 1)
T βk−β1 < ε

At that point for ν > T1, we have

|(Zyn)(ν)− (Zy)(ν)| ≤
∫ ν

0
(ν − s)β−1

∣∣∣∣Pβ(ν − s)
(
f (s, yn(s))− f (s, y(s))

)∣∣∣∣ds
≤ M

∫ ν

0
(ν − s)βk−1

(
|f (s, yn(s))|+ |f (s, y(s))|

)
ds

≤ ML

∫ ν

0
(ν − s)βk−1s−γds

≤ MLΓ(βk)Γ(1− β)

Γ(βk − β + 1)
T βk−β1 < ε,
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for 0 < ν ≤ T1 we get

|(Zyn)(ν)− (Zy)(ν)| ≤
∫ ν

0
(ν − s)β−1

∣∣∣∣Pβ(ν − s)
(
f (s, yn(s))− f (s, y(s))

)∣∣∣∣ds
≤ M

∫ ν

0
(ν − s)βk−1

(
|f (s, yn(s))| − |f (s, y(s))|

)
ds.

Seeing that limn→∞ |f (ν, yn(ν))− f (ν, y(ν))| = 0, by Lebesgue dominated convergence theorem

we get

|(Zyn)(ν)− (Zy)(ν)| −→ 0, n→∞.

Thus, clearly

‖(Zyn)(ν)− (Zy)(ν)‖ −→ 0, n→∞.

Which infers that the operator Z is continuous.

Thus the proof is complete.

3 Compact Semigroup Case

We assume that the operator S(ν) is compact for 0 < ν.

Theorem 3.1. Suppose that (H1) hold. At that point the Cauchy problem 1 concedes at least one

attractive solution.

Proof. Clearly y be a mild solution of 1 in ω as long as y be a fixed point of Z in ω. Therefore, it is

sufficient to prove that the operator Z has a fixed point in ω. According to lemma 2.10 it states that

Z : ω → ω is continuous and bounded. Then, it must be prove that Z is relatively compact. One

can surmise from lemma 2.9 that {Zy : y ∈ ω} is equi-continuous as well as limx→∞|(Zy)(ν)| = 0

uniformly for y ∈ ω. It remain to prove that W (t) = {(Zy)(ν) : y ∈ ω} is relatively compact in Y .

Suppose that t ∈ [0,∞).

Clearly, W (0) is relatively compact in Y . Suppose that ν ∈ (0,∞) be fixed, for all % > 0 and for

all ζ > 0, describe an operator Z%,ζ on ω as given below:

(Zε,ζy)(ν) = Cβ(ν)y0 +Kβ(ν)y1ν +

∫ ν−%

0

∫ ∞
ζ

βθ(ν − s)β−1Mβ(θ)× S((ν − s)βθ)f(s, y(s))dθds

= Cβ(ν)y0 +Kβ(ν)y1ν + S(%βζ)

∫ ν−%

0

∫ ∞
ζ

βθ(ν − s)β−1Mβ(θ)

×S((ν − s)βθ − %βθ)f(s, y(s))dθds.

Then, at that point through the compactness of Cβ(ν), Kβ(ν) and S(%βζ)(%βζ > 0), we get

W%,ζ(ν) = {(Z%,ζy) : y ∈ ω} is relatively compact in Y ∀ % ∈ (0, ν) and ∀ ζ > 0. Furthermore, for
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each y ∈ ω, we get

|(Zy)(ν)− (Z%,ζy)(ν)| ≤
∣∣∣∣ ∫ ν

0

∫ ζ

0
βθ(ν − s)β−1Mβ(θ)S((ν − s)βθ)f(s, y(s))dθds

∣∣∣∣
+

∣∣∣∣ ∫ ν

ν−%

∫ ∞
ζ

βθ(ν − s)β−1Mβ(θ)S((ν − s)βθ)f(s, y(s))dθds

∣∣∣∣
≤ βM0

∫ ν

0
(ν − s)βk−1|f(s, y(s))|ds

∫ ζ

0
θMβ(θ)dθ

+ βM0

∫ ν

ν−%
(ν − s)βk−1|f(s, y(s))|ds

∫ ∞
0

θMβ(θ)dθ

≤ βM0L

∫ ν

0
(ν − s)βk−1s−γds

∫ ζ

0
θMβ(θ)dθ

+ βM0L

∫ ν

ν−%
(ν − s)βk−1s−γds

∫ ∞
0

θMβ(θ)dθ

≤ βM0LΓ(βk)Γ(1− β)

Γ(βk − β + 1)
νβk−γ

∫ ζ

0
θMβ(θ)dθ

+ βM0Lν
βk−γ

∫ 1

1−%
ν

(1− s)β−1s−γds
∫ ∞
0

θMβ(θ)dθ → 0 as %→ 0, ζ → 0.

Hence, there exists relatively compact sets arbitrary close to set W (ν). Therefore, W (ν) is also

relatively compact in Y . At last according to Schauder fixed point theorem, 1 has a mild solution

y ∈ ω as well as y(ν)→ 0 as like ν →∞.

Thus, the proof is complete.

4 Noncompact Semigroup Case

When S(ν) is non-compact, we define the suppositions given below:

(H2): f : [0, T ] × Y → Y is a Caratheodory function and for some p > 0 there exist a suitable

function mp(ν) ∈ Lq((0, T ), R+) with q > − 1
βγ in such a way that

|f(ν, y)| ≤ mp(ν), and lim
p→+∞

inf
|mp(ν)|Lq(0,T )

p
= η <∞,

for ν ∈ [0, T ] and ∀ y ∈ Y satisfy |y| ≤ p.
At that point, for each y0, y1 ∈ B(Aα) with α < 1 +γ, the problem 1 has at least one mild solution,

provide that

Cqη

(
T 1−(1+βγ)u

1− (1 + βγ)u

) 1
u

< 1,

where u = q
q−1 .

Theorem 4.1. Suppose that (H1) and (H2) holds. Then, at that point the Cauchy problem 1 have
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at least one attractive solution.

Proof. According to lemma 2.10 we see that Z : ω → ω is continuous as well as bounded. Then,

it will be prove that Z is relatively compact. One can surmise from lemma 2.9 that {Zy : y ∈ ω}
is equi-continuous as well as limx→∞|(Zy)(ν)| = 0 is uniformly for y ∈ ω. It remains to prove that

W (ν) = {(Zy)(ν) : y ∈ ω} is relatively compact in Y .

For ν ∈ [0, T ], {(Zy)(ν) : y ∈ ω} is pre-compact in Y . When ν = 0 it is enough to see that

{(Zy)(0) : y ∈ ω} = {y0, y1 : y ∈ ω} is compact. Suppose that ν ∈ [0, T ] be fixed as well as %, ζ > 0.

For v ∈ ω, we define an operator Z%,ζ by

(Z%,ζy)(ν) = Cβ(ν)y0 +Kβ(ν)y1ν +

∫ ν−%

0

∫ ∞
ζ

βθ(ν − s)β−1Mβ(θ)T ((ν − s)βθ)f(s, y(s))dθds,

A has compact resolvent, for each ν ∈ (0, T ], {(Z%,ζy)(ν) : y ∈ ω, % > 0, 0 < ζ < ν} is pre-compact

in Y . Using (H2)

|(Zy)(ν)− (Z%,ζy)(ν)| ≤
∣∣∣∣ ∫ ν

0

∫ ζ

0
βθ(ν − s)β−1Mβ(θ)T ((ν − s)βθ)f(s, y(s))dθds

∣∣∣∣
+

∣∣∣∣ ∫ ν

ν−%

∫ ∞
ζ

βθ(ν − s)β−1Mβ(θ)T ((ν − s)βθ)f(s, y(s))dθds

∣∣∣∣
≤

∫ ν

0
Cq(ν − s)−1−βγmp(s)ds

∫ ζ

0
θ−γMβ(θ)dθ

+

∫ ν

ν−%
Cq(ν − s)−1−βγmp(s)ds

∫ ∞
ζ

θ−γMβ(θ)dθ

≤ Cq

(
T 1−(1+βγ)u

1− (1 + βγ)u

) 1
u

‖mp‖Lq(0,T )
∫ ζ

0
θ−γMβ(θ)dθ

+ Cq

(
T 1−(1+βγ)u

1− (1 + βγ)u

) 1
u

‖mp‖Lq(0,T )
Γ(1− γ)

Γ(1− γβ)

Utilize the total boundedness we have for every ν ∈ (0, T ], {(Zy)(ν) : y ∈ ω} is pre-compact in Y .

Hence, for every ν ∈ (0, T ], {(Zy)(ν) : y ∈ ω} is pre-compact in Y . Finally, Schauder fixed point

theorem, 1 has a mild solution y ∈ ω as well as y(ν)→ 0, ν →∞.

Thus, the proof is complete.

5 Example

Suppose that ω ⊂ RN be a bounded domain (R ≥ 0) with boundary ∂ω of group G4.

Examine the fractional initial bounded value problem
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
(CDβ

0+y)(ν, u) = δy(ν, u) + f(ν, y(ν, u)), ν > 0, u ∈ ω,
v
∂ω = 0,

y(0, u) = y0(u), y′(0, u) = y1(u).

(7)

In space Gb(ω) (1 < l < 2), where δ represent the Laplacian operator as regards the spatail variable

as well as CDβ
0+ acts for the Caputo fractional derivative of order β(1 < β < 2). Place

B̃ = δ

D(B̃) = {y ∈ G2+b(ω) : y = 0 on ∂ω}.

It follows from that [[22], Example 2.3] the point exist µ, ε > 0, such that

B̃ + µ ∈ Θ
l
2
−1

Π
2
−ε

(
Gb(ω)

)
.

Then problem 7 can be composed dynamically as (see [[23], Example6.2]){
CDβ

0+y(ν) = By(ν) + f(ν, y(ν)), ν ∈ [0,∞)

y(0) = y0, y′(0) = y1, 1 < β < 2.

Suppose that f(ν, y(ν)) = ν−β sin y(ν). At that point the supposition (H1) that is obviously

fulfilled. In outcomes, as indicated by lemma 2.9, the problem 7 has at any rate one attractive mild

solution.

Then again, for the first order evolution equation{
y′(ν) = By(ν) + ν−β, ν ∈ [0,∞)

y(0) = y0, y′(0) = y1, 1 < β < 2.

Our result basically disclose certain attributes of solutions for fractional evolution equation, which

are not controlled by integer order evolution equations.

6 Conclusion

The principal finding of this work show the specific class of attractivity solutions for fractional

evolution equation, we establish sufficient conditions for global attractivity of mild solution, while

the integer order evolution equation don’t have such attractivity. We discuss the attractivity of

solutions for Cauchy problems. Cauchy problems in these cases for which the semi-group is compact

as well as non compact. However there are not many attractive solution for fractional evolution

equation in literature.
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