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Abstract This work present the controllability of fractional evolution equations of order (1, 2). We
use the fractional calculus, the Monch fixed point (MFP) theorem and measure of non-compactness
(MNC). A controllability result is given out for the nonlocal Cauchy problem of the fractional
evolution equations including noncompact semigroups (NCSG) and the functions by excluding
Lipschitz continuity. The associated theorems and properties are demonstrated in detail and an
example is stated to clarify the effectiveness of the theoretical outcomes.
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1. Introduction

Controllability is the basic theory in control theory of mathematical, which as-
sumes a significant part in control systems. In the last few years, different methods
have been used in many publications to study the controllability of distinct nonlinear
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and linear stochastic and deterministic dynamic systems. (cf., e.g., (1; 2; 3; 4; 5; 6; 7;
8; 9; 10)). There have additionally been a few papers (e.g, (11; 12; 13)) in which non-
linear evolution equations described the controllability of systems in infinite dimen-
sional spaces. Further when we deal with compact semigroup and other assumptions
are satisfied, the utilization of controllability outcomes is simply confined to the finite
dimensional space (cf. (14; 15; 16)).

In this article, we present the controllability of fractional evolution equations of order
(1, 2). We use MNC, the fractional calculus and the MFP theorem. We get a control-
lability results of the fractional evolution equations for the nonlocal Cauchy problem
including NCSG and the nonlocal functions by excluding Lipschitz continuity. Let us
assume the nonlinear fractional evolution system:

‘Du(C)+Au(C) = f(Cu(C),Gu())+Bv(), L €l
u(0) =A~1(0)g(u) (1
u'(0) =u.

where “2* is the Caputo fractional derivative of order a € (1,2),—A: Z(A) CU = U
is the infinitesimal generator of a Cp-semigroup 6(&)(& > 0) of uniformly bounded
linear operator B, u is the control function given in L?(I,U) operator I = [0,a], a > 0 is
a constant, define the family of closed linear operators A({) on a dence domain Z(A)
in Banach space E’ into E’, where D(A) is independent of §, The continuous function
fIXE —E', g:C(I,E") — E' is anon-local function to be specified and

Gu(¢) = Jj K (¢ @)u(@)do.

is a Voltera integral operator kernel K € C(@,R"),m = {({,.@):e>{ > @ > 0}. All
through this article we generally expect that

K* =supg¢; fOC K¢, m)do.

In this paper, we use a major type of nonlocal function . At the start, we familiarize
a reasonable definition of mild solutions of the system (1), and then in noncompact
semigroup the controllability of the system (1) is determined by applying the MFP
theorem. The remainig paper is precised as follows. In Section 2, as regard to frac-
tional calculus and MNC some preliminaries are given. In Section 3, we provide the
controllability results of the fractional evolution equation system (1). Toward the end,
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an applicatin is presented to demonstrate the theory of the obtained outcomes.

2. Preliminaries

Let U is a Banach space with norm ||.||. We represent the Banach space by C(I,U)
V continuous U-value function on interval / with the norm ||u||. = max||u({)||. We take
|flle to represent the L#(I,R') norm of f € L¥(I,R™) for some o with 1 < g < 0.
Let a closed linear operator A : Z(A) C U — U and —A is a generator of Cy-semigroup
A(8)(& = 0) of uniformly bounded linear operator in U. Therefore, 3 a constant N > 1
such that ||@(8)|| < N forall § > 0.

Definition 1. Taking the lower limit as zero for a function f € C™[0,00) the Caputo
fractional derivative of order n — 1 < ¢&¢ < n can be written as

4
‘DHE) = ﬁ/o (¢ —@)" ") (@)dw,t > 0,m e N.

For x € U, we define three families

(Ca©)} 205 Ja(C) = J§ Ca($)dE and {K,($)}o< of operators by
Cu= J5 Ma(0)c(896)d0, K,(C)= [y aOM,0®(£0)d0, 0<a<1
where
M,(8)= 0"~ (974),

1 T(ma+ 1
Pa(B) = — Xy (~1)" 1o ! (’"Lf)sm(mna), (0,0) € 6. The probability
m

density function M, defined on (0,) which has the following properties M, (6) > 0
for all (0,00) € 6 and ;" M,(a)d6 = 1.
Lemma 1. The operators C,(§),J,(&) and K, (&) proceed the listed characteristic.

(i) For each fixed 0§ >0 and any x € U.
N
1Ca(E)xll < NlIxll, ([ Ka(E)xl| < ﬁa)IIXHC“, [Ia(&)x]] < Njx[|€.

(if) For all 0 < ¢ the operators C,(&),K,(&) and J, (&) are strongly continuous.

(iii) If we have an equicontinuous semigroup {A(£)(0< §)}, then C,(&),K, (&) and
J4(€) in U for O<t.
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Definition 2. (see, (17), (18), (19)). Let in Banach space (E’, <) take a non-negative
cone O of an order (1,2). Defined a function Y on the set of all bounded subsets of
the Banach space U with values in @™ is called measure of non-compactness (MNC)
on U if ¢(co(¥)) = Y(W) for all bounded subset ¥ C U, where ¢5(W) is called closed
convex hull of W.

The major case of the measure of non-compactness of Hausdorff B defined by

B(¥) = inf{0 < € : € is greater than a finite number of balls of radii which cover
the ¥} on each bounded subset W of U. For any C(I,U) C B and § € I, set B({) =
{u(§):ue B} CU.Ifin C(1,U) B is bounded, then also in U B({) is bounded and
B(B) = B(B({)). It is notable that the measureof noncompactness B verifies the
listed characteristics, (see, e.g, (20), (21), (22)) for all bounded subsets ¥,%¥',¥; of
U.

(1) ¥, C¥, = B(¥2) >B(¥1);
(2) B(Y¥))+ (¥2) = BV +BY,) where V1 +¥r ={x+y:xe ¥,y ¥},
(3) max{B(¥1),(¥2)} = B(¥1 +¥2);
4) |A|B(¥Y) = B(AY) forany L €R.
(5) B({a}UY)=B(Y) foreveryacU.
(6) B(¥) =0<«= Y is relatively compact in U.
Definition 3. x € C(I,U) is a function which defined a mild solution of system (1) if

for each u € L>(I,U) the integral equation

¢
u(@) = Ca(t)A_l(O)g(”)JFJa(C)ulJF/O (¢ -0)" 'K~ o) | f(0.u(@),Gu(®))
+Bv(®)|d®.

is satisfied.
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3. Main results

Theorem 1. We get a controllability result of the fractional evolution equations for
the NLC problem including NCSG and the nonlocal functions by excluding Lipschitz

continuity. Let us assume the nonlinear fractional evolution system:

‘Du(8) +Au(8) = f(Eu(8),Gu(8)) +Bv(E), Ll
u(0) =A~"1(0)g(u)
u'(0) =uy.

where €2 is the Caputo fractional derivative of order 1 < a < 2, operator I=[0,a],

a > 01is a constant.

Proof. We can write the integral equation

&) =47 O)glw) +r+ s [ (£~ @) 1(.(0).Gu(@)) + Bu(@) - Au(@)]do

[(a)

09
uQ) = ClDAT O+ + [ (E @) ka(E )
[f <G)',u(a)'),Gu(G)') + Bv(@) —Au(ﬁ)’))} do.
where C,(§) = ;" Ma(0)c(£0)d0,
1,(8) = fy Ca(@)dwm,

K.(8) = [y abM,0®(£6)d6.
Let A > 0 and the Laplace Transform is given

V) =) = [ e ou)e
L[f((é),u(CLGu(C)) 1 BU(Q) —Au<c>} )

)
N
QU
=
>
|

@

3

“

_ /Ome_m {f((g),u(g),Gu(CO + Bv(v) Au(v)} 1.
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Now taking Laplace Transform of (2)

¢
LW = LA O] +Lhad] +2| s [T @)

[f (@) u(®@).Gu(®)) + Bv(@) —Au(w)b]dw]

V) = AT 00800+ g — 5 AVA) 5 HAVA) + 55AV(A)
= AT O+ i+ () [T
= AT g + 5z + 5 HA)
V) = QA 2T O + (AT 4 A) A
AT +A) " (A). )

Note: For any A > 0 there exist a bounded inverse operator [AZ1+A]~! € L[E] and

C
[A]+1°

IAP1+4] < 1F¢>0
V() = }L%’l/Oooe’l%gc(é)[A’I(O)g(u)]dé,’—#?t’l)t%*l/Owe”l%gc(é)uldg
+ [ ann

a

.Let9(6) = 011

M,(67%), 0 € (0,0). Taking its Laplace

/(; T2 0,(0)d6 = ¢ . ©)

International Journal of Advancements in Mathematics 2(2), 2022 89


http://www.scienceimpactpub.com/IJAM

For a € (1/2,1) using equation (5) we have
2 [ e(©A ! 0)glu)dg
| atray e R ega pgluyag

[ i (/ W”C‘P(G)de)c(tﬁ“m‘(0>g<u>d¢
/ / 09.(8)e M0 c(1)A™1 (0)g(u)d6dr

B / %C[/ 9a(0)e <§Z> '(0)g(w)d0]dS
- / Ma( (0)g(u)d6]dL
= L[Ci(1)A” I(O)g(u)](l)_ o

since L[H;(t)](A) = A~ L.
By using Laplace Convolution Theorem

AT mdS = L[H{(O)](A) LG (O] ()

= L[(H +C)(Q)m](A). ®)

Similarly,
/Om e HES(O)p(r)dg

/Omaga—lg—laos(ca)“(/WC

/Om /OmaC“‘g¢a(9)e—l“€3(gﬂ)u(z)dedg
L[/OmaCa—lMa(G)S(tae)dG} (A).L {f(C,u(C),Gu(C)) +Bv(§)} )

¢
L[/ (¢ —@)" 'K — o) ((@,u(@),Gu(®)) +Bv(w))] : )
0
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By using equation (6),(7),(8), in (2) we get
u(8) = Ca(§)A(0)g(u) +Ja(Qur + J3 (6~ @) Ku({ — @) | f (@.0(@),Gu(@)) +

Bv(w)] do.
This complete the proof. |
Lemma 2. (25;26;27) Let B = {v,} C C(I,U) be countable. If there exist ¢ € L!(I)

in such a way that [|v,($)|| < @({) a.e. { €1, n=123,..., then B({f;va({)dr :n €
N}) <2 [;B(B(£))dS.

To corroborate our conclusion, for every & € C(I,U) firstly we take the linear evolution
equation non-local problem (LNP).

2°u(8) +Au(8) =h(f) Cel
u(0) =A=' (0)g(u (10)
W' (0) =u.

For the LNP (10), we get the following outcomes.

Lemma 3. Assume that the conditions

1
(HO) |A~1(0)| < » holds. Then LNP (10) has a unique mild solution x € C(1,U) spec-
ified by

¢
M(C):A_I(O)g(u)Ca(C)SJrJa(C)ul+/0 (E-@)K(E—@)h(@)dw {el. (11)

where S = (1 —A~1(0)g(u))~".

Proof. From the condition (HO), we get

1A= (0)Ca(G) | < JATH(O) I Ca(G) | < 1
According to the operator spectrum theorem, S := (1 —A~1(0))~! exists as operator
and is bounded.
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Moreover, by Neumann expression, we acquired

1

I511< X 14~ O0)CEI" = {214 O < =iy

We can easily see that LNP (see (9)), (10) has a exclusive mild solution x € C(I,U)
expressed by

¢
u(§) = Ca(§)u(0) +Ju({)us + /0 (-0 'Kl - @h(@)dm.  (12)

From equation (11)

1

_ -1 u
M0 = ey [ O
a0 [*(@ - o K(G- @i

Since 1 —A~1(0)C,(&,) has a bounded inverse operator S, we acquired

S/ ) 'K (¢ — @)h(B)dD
Putting the values we get

s/ K (E — @)h(@)dD. (13)
where S = (1 —A~!(0)g(«))~". From equations (12) and (13), we know that function
x € C(1,U) satisfies (11). Conversely, can prove thewe function x € C(I,U) specified

in (11) is a mild solution of the linear evolution equation nonlocal problem (10).
This complete the proof. |
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Controlability results

(H1) An equicontinuous semigroup A(&)(§ > 0) of uniformly bounded linear oper-
ator generated by —A in U.

(H2) (i) Define the Linear operator W : L>(I,U) — U by
(e}
Wu = / (0 —$)K,(0 —s)Bv(s)ds.
o

has W~! an inverse operator where the value is taken L(1,U) ker W and 3 N; >
0,N, > 0 as two constants in such a way that ||B|| < Ny, [[W 1| < N,

1
(ii)3 a constant a; € (0,a) and a function Z,, € N (I,R™) such that
Z,(0)B(2) = BW-12)()), ¢ €I for any countable subset 7 C U.

(H3) The function f: 1 x U x U — U satisfies,
(i) for a.e t € I and function f({,.,.) : U x U — U is continuous and the function
f(.x,y) : I — U strongly measurable for each (x,y) € U x U,

(i) for any 7 > 0, 3 a constant a € (0,a) and function Ky € Lo (I,RT)
such that
sup{[l/(Ex )l - lIxll < 7 |lyll < K*7'} < K#(S), C €1,
where K; satisfies lim inf — || Kz|| 1 AF < oo,
F—oo T L%
(iii) 3 a3 € (0,a) and a function & € L% (1,R™) in such a way that

B(f(£,21,2:)) <&E(E)(B(21)+B(2,)) & €I forany countable subset 2,9, C
U.

Let
9(8) = Ca($)A(0)g(u) + Ka( & )ur

Applying the hypothesis H; (i) for every x; € U. We define a control function v({) =
v(§:x) by
v(Cx)=w! {xl — (o)~ J§ (6 —@)" 'Ka(0 — @) f(@.u(®),Gu(®))d®B | (§), § €
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1. For any sake of brevity, we write

0(&:x) = Bv(3x) + f(0,u(B),Gu(®)).
00 =40+ [ (0-0)" 'Ke0(@0.

Now introduce the notations
ot % a—

= — a;

(a[+1) bl 1

N3 =Ei|[Ly| 1 : Na=E3|§]l +

L% L%3

Forevery 7> 0, Let B := {x € C(I,U) : ||x|| < 7}. From Lemma (1) and (2),it proceed
the following results.

i = i =1,2,3;
1 1_al i 7=

Lemma 4. Suppose that (H2)(i) and (H3)(ii) hold. Then we get
1Q(8:x)[| < NiNa|x1 || + NNz | +LuEz||Kf||LL +K#(C)

NN{N>c®|A~1(0)] \ NE>|A~1(0)] Lub®
Fat )(1-NAT(0)]) ('xl” * ””) T @ N ) (

1) T2
L%

loW@)Il <

a

NNiN,
[(a)(1=N|AZH(0)])

for any x € B,s,where Lu =

Proof. For any { € I and x € By, from Lemma(1) and Lemma(4), we have
[Bv(&:x) | < NiNaoflxt[[+NiN2[|¢(E)[| +NiN2
(o2
|| (6-0)" 'Ku(o@)f(@.u(@) Gu(®))da|

N’N{N-A~1(0)

< NiVa|lx |+ el + T(@)(1—NJA-1(0)])
Nli\gz;b /06(0 —0)" 'Ky(0 — @)F.(@)doD
<

N]N2||X1 || —|—N1N2H)C2|| +LME2HK;HL% .
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Hence we can observe that
1Q(E:x)[| < Nia[x:1[| + NiN2[[x2 | +LME2||Kf||L% +K#(8).

for all { € I and x € B;. Futhermore, we obtain

~ -1 ¢
I < 10O+ A T € - @ le@i o
< I+ O e (€~ @) el + Nl

+ LMEZHKFHLé —I—K;(l)]dw

NN{N>c|A~1(0)]
ot Dt Ty (1 )

NE>|A~1(0)] Luc*®
r(a)(l—N|A—1<o>|)( a “)”Kf”m’z'

This complete the proof. |
Define an operator Y : C(Y;U) — C(I;U) by
~ ¢
()(0) = 0w+ [ ((-0)" 'Kal({ ~@)0(@ 0w, Lel. (14

Lemma 5. Let (H2)(i) and (H3)(i,ii) hold. Then the operator Y : B — Bj; is continu-
ous proceeded that

NnE» Luc®
@) (1 —NJA-T(0)]) { 2 “] <t (1)

Proof. Firstly, we verify that Y (B;) C Bj for 7 > 0. If this was not the case, 3 x € By
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and {7 € I in such a way that ||(Yu)(z)|| > 7. By Lemma (1) and (4), we have

~ .4
P I0WI+ [ (€ - o) Kl —@)Q(@inda]

~ N 17 B
< ||Q(x)|\+7/ (tr —@)° 1[N1N2||x1H+N1N2||x2||+LuE2||K;|| L
['(a) Jo L@
+K:(¢)||dw]
< S (Il + )
< x|+ [x2
[(g+1)(1-N|A~1(0)])

NE; Luc*
1)K .
T e )
Dividing both sides by 7 and taking lower limit as 7 — +oo , we get
NnE, Luc* i) >1
C(a)(1-NATH(0))\ «a ~
Which is a contraction. Hence Y (B;) C By for some 7 > 0.
Now, we will that Y : B — By is continuous. For this target, we suppose that y,, — yg in
Br. We describe Fyy (@) = f(x.yn(®),Gym(®)) and Fo(@) = f(x,y0(®),Gyo(®@)).By
(H3)(1,ii) and Lebesgue dominated convergence theorem, we get
o' (£~ @) |Fu(@) - Fp(@)[ldB €0,  § €1(m— +oo)
By the definition of v({;x), we get
NNo[|A~H(0)]
||V(vam) V(C7y0)|| F(a)(l _N‘Afl(o)l)
Fo(O)||dm — 0(m — +o0).
Consequently,
10(E53n) — QS5 y0) | S Ni[v(&3ym) — V(C;ygo) [+ 11Fn(8) = Fo(E) Il = O(n — +ee)
10(m) = Qo) < [16(Z.ym) =9 (Ey0)ll + J5 (& — @) [|Q(@:ym) — Q(@:y0) | dB —
0(m — +o0).
Then we get,

NNy o
HMwm+ﬁ£mxofw>lwwwf

~ ~ N /¢ .
1(¥ym)(§) = (Xy0) (D) < N||Q<ym)—Q(yo>||+@l (&-o)

1Q(@:ym) — Q(@;y0)[|d®B — O(m — +o0)
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Which gives that Y : B — By is continuous. This complete the proof. Now, we can
describe the main results of this paper. |

Theorem 2. Suppose that the hypothesis (H2) — (H3) be satisfied. Then the fractional
non-local system (1) is controllable on I provided that (15)

ONN,(1+2K+)

* AR NATO))

[M3Ns +1] < 1. (16)

2NN,
I(a)(1-N[A1(0)])’

Proof. We can state an operator Y : C(I,U) — C(1,U) as (3.1). By taking (5) we can
observe that Y : By — By is continuous. We have to justified that Y satisfies Monchs
condition. For a particular aims, Let ¥ C By be countable and ¥ C co({0} UY(2)).
We will provide that Y is relatively compact. By using the characteritics of measure of
noncompactness ‘B, it is sufficient to demonstrate 3(2) = 0.
Mainly, we show that Y (2) is continuous on /. For 0 < _1 < &, < b, which is denoted
by
§1=Ca(82)Q(7) — Ca(81)Q(7)|
S2 = [1a(82)Q(Z) = Ja(81)Q(D)]|
S5 =1 [ [(81 = @)*"! = (& — @) |Ko(&, — @) 0(@; 7)d |
Sa =15 (81 = @)~ [Ka(8, — @) — Ku(81 — 3)0(@; 7)d |
Ss = | [ (8 — @) Ky(8, — B) (@ 2)d .
Then we obtain
I(Y(2)(82)) — (Y (2)(81)I 1 + 2+ S5+ 54+ s
From (H1), we can easily see that §1,8, — 0 as 6, — 6; — 0, from Lemma (1) and (5),
we have

N NiN2||x1]| 4+ LuE> | K5 || a])
53 < L (G- w) ! — (8- @) d

['(a)
N||Kf||L¢)

1 1—a2
T)“z ( (& — @) — (8 — w)“l“’““”)

where N5 =

+
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N(N1Np x| +LME2||Kr||L%)

a NIIK | a-ay
5 Ma+1) @ gy 1ty (2

Which implies that S3 — 0 as 6, — 8 — 0. If 6; = 0,0 < & < o, It is clear that
S4=0 for 8 > 0and o € (0,0) small enough, We have

51 —0
S < Wﬁ (81~ @) [Ka(&: ~ @) — Ku(81 ~ B)]Q(@: 2)d |
o]
+ 1 G- K6 - @) - Ku(8 - 0)0(@: 2)do|
[N(Nuwnnu+JMEmKﬂué) Il (57~ o)

+ -
a (ap+1)1-a
sup  [|Ka(82 — @) — Ka(81 — @) |

Bel0.8, o]
AN(NNo||x1 || + LuBL ||K7|| 1 )o®  2N||K:[| 1 o™
L% L%

T(at1) T T@@mtr)

<

X

+

The supposition (H1) guarantees that S4 — 0 as &, — 6; — 0 and 6 — 0. Therefore
Y (D) is equicontinuous on /.
Now we have to check B (Y (2)). From (H2)(ii) and (H3)(iii), we get
B(Bv(D;2)) < NaNs(1+2K*)K,,(@)B(2),
B(Q(®; 7)) < NaNs(142K*)K,,(@)B (D) + (1 +2K*)S (@) B(2)
and
2NNy (14 2K*)|A~1(0))
BO) < Ty ot
for @ € [0,{],§ € I. Moreover, we have

B(Y(2)(£)) <NB(Q(D)) + %fo ((—@)'B(Q(@:7))d®m
2NNy (1+42K*) B
It proceeds from Y (D) which continuous and boundedness

B(Y(2)) = max;e; B(Y(Z)(8)) < AB(2)
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Therefore,

B(Y(2)) < B(c({0}UY(2))) < B(Y(2)) < AB(2)

Since A < 1, we get B(2) = 0. Then D is relatively compact.

So by 4 , one fix point x € By which Y has, it gives a mild solution of the fractional
non-local system (1) is s controllable on / and satisfied x(b) = x;.

This summarizes the proof. |

Remark 1. 1, relating to a particular nonlocal function, we present another defini-
tion of the mild solutions of system (1). According to following newly definition, we
state a control function and verify the system (1) of controllability including NCSG.
Therefore, in this way we get relevant results exist in (28). Let the supposition (H3)
be converted into the form which listed below (H3)'. The function f: I xU xU — U
satisfied the listed conditions.

(i) for a.e { € I and function f({,.,.) : U x U — U is equi-continuous and for
some (x,y) € U x U, have a strongly measurable f(.,x,y) : I — X.

1
(ii) for some 7 > 0, there exist a constant a; € (0,a) and function K € L* (I, R")
such that  sup{||f(L.xy)| : xll < 7|y < K7} <K(), el

1
(iii) There exists a constant a3 € (0,a) and a function & € L% (I,R™) in such a
way that

B(f(8,21,22)) <E)(B(21)+B(2,)) € el forany countable subset 21,7, C
U.

Corollary 1. Let the supposition (H0)-(H2) and (H3)' be satisfied. Then given that
(15) the fractional non-local system (1) is controllable on /

Remark 2. In supposition (H3)/(ii), K of 0 < #is independent. In particularly, bounded
function is f({,x,y). Then the inequality (15) automatically takes place due to p = 0.
So, Corollary 1 is most preferable to utilize in application.
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4. Application

To emphasize the main result, we suppose the fractional dynamical system of the

form
3 u e?
2 eufe) = 24 )+ (C—5ulsa)as] +ox(Cy) L

(1) =ul(§2) =0 a(ly) =aretan 5 g(u)

W (0,y) = ur(y). -

Proof. where 0 < @ and b > m > 0 are constant, x : I x (1,2) — (1,2) is continuous
onl=10,b].

LetU =X =C([1,2]) and if A: P(A) CU — U be defined by

Ac=-¢':¢e2(A)

9(A) = {g € U,g(1) = ¢(2) = O}.

As we know very clearily that in U an equicontinuous semigroup A (0 < §) genersted
by —A and it is given by

A(L)s(s) =6(E+5)

for ¢ € U, Then A(£)(0 < §) is not a compact semigroup in U and supg¢; || A(E) | <
1.

Define
W(O0) = u(Z), @iu«:)(y);;su(c,y)
FEa@ @) = 2E20 4 g+ [FE s utsas
WO0) = K(Cy), A*l(O)—arctanZkz
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Then for some x € By := {x € C(I,U); <}, €1, wehave

-2
GG < 25 [+ [ utslas)
(3+b3)e 27
3(1+€f)
(3+0°)F
~X 6 .
. , . 3+03
It is mmostly knowning that the supposition (H3) takes place for y = and &E(8) =

%for all { € I. From

1A= (0)| < || arctan kzll
As the supposition (Hp) takes place. For y € (1,2), the operator W is described by

<l

W) = [ (0= Ky(o—9)Bris)ds.

where
{C%(t)}0>§, {K%m}o)g and {J%(C)}O>C are defined by

Cs e = /Ms §(530+5))d6
Ky (Q)e(s) = /6M5 5(¢30+5))d0
KO = [ eescio s
WhereM%(G)zge%gp%(G%a) for 0<9<°oandp%(9) is given by
F(m5+1)
1 & m— —5m PY . Smm
Py =z L (-0 ——sin(57), 0.€ (0
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Conclusion

In summary, our study focused on examining the precise controllability of non-
local Cauchy problems related to fractional integro-differential evolution equations
in Banach spaces with non-compact semigroups and non-local functions. To achieve
this, we established a relevant definition for mild solutions, utilized a specific type
of non-local function, and employed the Monch fixed point theorem to demonstrate
exact controllability in the case of non-compact semigroups. As a result, our findings
demonstrate the effectiveness of these theoretical outcomes.

References

[1] G. Arthi, J. Park,On controllability of second-order impulsive neutral integro-
differential systems with infinite delay, IMA J. Math. Control Inf. (2014) 1-19.

[2] G. Arthi, K. Balachandran, Controllability results for damped second-order im-
pulsive neutral integro-differential systems with nonlocal conditions, J.Control
Theory Appl. 11 (2013) 186-192.

[3] G. Arthi, K. Balachandran, Controllability of damped second-order neutral func-
tional differential systems with impulses 16 (2012) 89-106.

[4] A. Debbouche, J.J. Nieto, Sobolev type fractional abstract evolution equations
with nonlocal conditions and optimal multi-controls, Appl. Math.Comput. 245
(2014) 74-85.

[5] L. Byszewski, Theorems about the existence and uniqueness of solutions of a
semilinear evolution nonlocal Cauchy problem, J. Math. Appl. Anal. 162(1991)
494-505.

[6] S. Kumar, N. Sukavanam, Approximate controllability of fractional order semi-
linear systems with bounded delay, J. Differ. Equ. 252 (2012) 6163-6174.

International Journal of Advancements in Mathematics 2(2), 2022 102


http://www.scienceimpactpub.com/IJAM

[7]1 L. Byszewski, Existence and uniqueness of classical solutions to a functional
differential abstract nonlocal Cauchy problem, J. Math. Appl. Stoch. Anal.12
(1999) 91-97.

[8] P. Chen, Y. Li, Existence and uniqueness of strong solutions for nonlocal evolu-
tion equations, Electron. J. Differ. Equ. 18 (2014) 1-9.

[9] C. Cuevas, C.J.C. de Souza, S-asymptotically -periodic solutions of semilinear
fractional integro-differential equations, Appl. Math. Lett. 22 (2009) 865-870.

[10] C. Cuevas, C. Lizama, Almost automorphic solutions to a class of semilinear
fractional differential equations, Appl. Math. Lett. 21 (2008) 1315-1319.Qual.
Theory Differ. Equ. 58 (2010) 1-17.

[11] T.Diagana, G.M. Mophou, G.M. NGuérékata, On the existence of mild solutions
to some semilinear fractional integrodifferential equations, Electron. J.

[12] R. Agarwal, M. Benchohra, B. Slimani, Existence results for differential equa-
tions with fractional order and impulses, Mem. Differ. Equ. Math. Phys.
44(2008) 1-21.

[13] S. Aizicovici, M. McKibben, Existence results for a class of abstract nonlocal
Cauchy problems, Nonlinear Anal. Ser. A: Theory Methods 39 (2000) 649-668

[14] K. Deng, Exponential decay of solutions of semilinear parabolic equations with
nonlocal initial conditions, J. Math. Appl. Anal. 179 (1993) 630-637.

[15] E. Hernandez, D. O’Regan, Controllability of Volterra—Fredholm type systems
in Banach spaces, J. Franklin Inst. 346 (2009) 95-101.

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Frac-
tional Differential Equations, North-Holland Mathematics Studies, vol. 204,EI-
sevier Science B.V., Amsterdam, The Netherlands, 2006.

[17] S.Ji, G. Li, M. Wang, Controllability of impulsive differential systems with non-
local conditions, Appl. Math. Comput. 217 (2011) 6981-6989.

International Journal of Advancements in Mathematics 2(2), 2022 103


http://www.scienceimpactpub.com/IJAM

[18] F. Li, Solvability of nonautonomous fractional integrodifferential equations with
infinite delay, Adv. Differ. Equ., 2011, 18 pages., Art. ID 806729.

[19] F. Li, An existence result for fractional differential equations of neutral type with
infinite delay, Electron. J. Qual. Theory Differ. Equ. 52 (2011) 1-15

[20] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and
Semilinear Differential Inclusions in Banach Spaces, De Gruyter, Berlin,

[21] J. Liang, J.H. Liu, T.J. Xiao, Nonlocal impulsive problems for nonlinear differ-
ential equations in Banach spaces, Math. Comput. Model. 49 (2009) 798-804.

[22] J. Liang, J.H. Liu, T.J. Xiao, Nonlocal Cauchy problems governed by compact
operator families, Nonlinear Anal. 57 (2004) 183-189.

[23] J. Liang, J. van Casteren, T.J. Xiao, Nonlocal Cauchy problems for semilinear
evolution equations, Nonlinear Anal. 50 (2002) 173—189.

[24] J. Liang, T.J. Xiao, Solvability of the Cauchy problem for infinite delay equa-
tions, Nonlinear Anal. 58 (2004) 271-297.

[25] N.I. Mahmudov, S. Zorlu, Approximate controllability of fractional integro-
differential equations involving nonlocal initial conditions, Bound. Value Probl.
2013 (2013) 118.

[26] J. Liang, T.J. Xiao, Semilinear integrodifferential equations with nonlocal initial
conditions, Comput. Math. Appl. 47 (6-7) (2004) 863-875.

[27] H.R. Heinz, On the behavior of measure of noncompactness with respect to dif-
ferentiation and integration of vector-valued functions, Nonlinear Anal. 7(1983)
1351-1371.

[28] N.I. Mahmudov, S. Zorlu, On the approximate controllability of fractional evo-
lution equations with compact analysis semigroup, J. Comput. Appl. Math. 259
(2014) 194-204.

International Journal of Advancements in Mathematics 2(2), 2022 104


http://www.scienceimpactpub.com/IJAM

	1 Introduction
	2 Preliminaries
	3 Main results
	4 Application

