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Abstract This work present the controllability of fractional evolution equations of order (1, 2). We
use the fractional calculus, the Mönch fixed point (MFP) theorem and measure of non-compactness
(MNC). A controllability result is given out for the nonlocal Cauchy problem of the fractional
evolution equations including noncompact semigroups (NCSG) and the functions by excluding
Lipschitz continuity. The associated theorems and properties are demonstrated in detail and an
example is stated to clarify the effectiveness of the theoretical outcomes.
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1. Introduction

Controllability is the basic theory in control theory of mathematical, which as-
sumes a significant part in control systems. In the last few years, different methods
have been used in many publications to study the controllability of distinct nonlinear
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and linear stochastic and deterministic dynamic systems. (cf., e.g., (1; 2; 3; 4; 5; 6; 7;
8; 9; 10)). There have additionally been a few papers (e.g, (11; 12; 13)) in which non-
linear evolution equations described the controllability of systems in infinite dimen-
sional spaces. Further when we deal with compact semigroup and other assumptions
are satisfied, the utilization of controllability outcomes is simply confined to the finite
dimensional space (cf. (14; 15; 16)).
In this article, we present the controllability of fractional evolution equations of order
(1, 2). We use MNC, the fractional calculus and the MFP theorem. We get a control-
lability results of the fractional evolution equations for the nonlocal Cauchy problem
including NCSG and the nonlocal functions by excluding Lipschitz continuity. Let us
assume the nonlinear fractional evolution system:

cDau(ζ )+Au(ζ ) = f (ζ ,u(ζ ),Gu(ζ ))+Bv(ζ ), ζ ∈ I
u(0) = A−1(0)g(u)
u′(0) = u1.

(1)

where cDa is the Caputo fractional derivative of order a ∈ (1,2),−A : D(A)⊂U →U
is the infinitesimal generator of a C0-semigroup δ (ζ )(ζ ⩾ 0) of uniformly bounded
linear operator B, u is the control function given in L2(I,U) operator I = [0,a], a > 0 is
a constant, define the family of closed linear operators A(ζ ) on a dence domain D(A)
in Banach space E ′ into E ′, where D(A) is independent of ζ , The continuous function
f : I ×E ′ → E ′, g : C(I,E ′)→ E ′ is a non-local function to be specified and
Gu(ζ ) =

∫ ζ

0 K(ζ ,ϖ)u(ϖ)dϖ .
is a Voltera integral operator kernel K ∈C(ϖ ,R+),ϖ = {(ζ ,ϖ) : e ⩾ ζ ⩾ ϖ ⩾ 0}. All
through this article we generally expect that
K∗ = supζ∈I

∫ ζ

0 K(ζ ,ϖ)dϖ .
In this paper, we use a major type of nonlocal function . At the start, we familiarize
a reasonable definition of mild solutions of the system (1), and then in noncompact
semigroup the controllability of the system (1) is determined by applying the MFP
theorem. The remainig paper is precised as follows. In Section 2, as regard to frac-
tional calculus and MNC some preliminaries are given. In Section 3, we provide the
controllability results of the fractional evolution equation system (1). Toward the end,
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an applicatin is presented to demonstrate the theory of the obtained outcomes.

2. Preliminaries

Let U is a Banach space with norm ∥.∥. We represent the Banach space by C(I,U)

∀ continuous U-value function on interval I with the norm ∥u∥c =max∥u(ζ )∥. We take
∥f∥L℘ to represent the L℘(I,R+) norm of f ∈ L℘(I,R+) for some ℘ with 1 ⩽℘< ∞.
Let a closed linear operator A : D(A)⊂U →U and −A is a generator of C0-semigroup
△(ζ )(ζ ⩾ 0) of uniformly bounded linear operator in U . Therefore, ∃ a constant N > 1
such that ∥℘(ζ )∥⩽ N for all ζ ⩾ 0.

Definition 1. Taking the lower limit as zero for a function f ∈ Cm[o,∞) the Caputo
fractional derivative of order n−1 < α < n can be written as

cDaf(ζ ) =
1

Γ(m−a)

∫
ζ

0
(ζ −ϖ)m−a−1f(m)(ϖ)dϖ , t > 0,m ∈ N.

For x ∈U , we define three families
{Ca(ζ )}ζ⩾0, Ja(ζ ) =

∫ ζ

0 Ca(ζ )dζ and {Ka(ζ )}0⩽ζ of operators by
Ca =

∫
∞

0 Ma(θ)c(ζ aθ)dθ , Ka(ζ ) =
∫

∞

0 aθMaθϖ(ζ aθ)dθ , 0 < a < 1
where
Ma(θ) =

1
a

θ−1− 1
a ρa(θ

− 1
a ),

ρa(θ) =
1
π

∑
∞
m=1(−1)m−1θ−am−1 Γ(ma+1)

m!
sin(mπa), (0,∞) ∈ θ . The probability

density function Ma defined on (0,∞) which has the following properties Ma(θ) ⩾ 0
for all (0,∞) ∈ θ and

∫
∞

0 Ma(a)dθ = 1.

Lemma 1. The operators Ca(ζ ),Ja(ζ ) and Ka(ζ ) proceed the listed characteristic.

(i) For each fixed 0ζ ⩾ 0 and any x ∈U.

∥Ca(ζ )x∥⩽ N∥x∥, ∥Ka(ζ )x∥⩽
N

Γ(a)
∥x∥ζ a, ∥Ja(ζ )x∥⩽ N∥x∥ζ .

(ii) For all 0 ⩽ ζ the operators Ca(ζ ),Ka(ζ ) and Ja(ζ ) are strongly continuous.

(iii) If we have an equicontinuous semigroup {△(ζ )(0⩽ ζ )}, then Ca(ζ ),Ka(ζ ) and
Ja(ζ ) in U for 0<t.
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Definition 2. (see, (17), (18), (19)). Let in Banach space (E ′,⩽) take a non-negative
cone Θ+ of an order (1,2). Defined a function ϒ on the set of all bounded subsets of
the Banach space U with values in Θ+ is called measure of non-compactness (MNC)
on U if ϕ(c0(Ψ)) = ϒ(Ψ) for all bounded subset Ψ ⊂U , where c0(Ψ) is called closed
convex hull of Ψ.
The major case of the measure of non-compactness of Hausdorff B defined by
B(Ψ) = inf{0 < ε : ε is greater than a finite number of balls of radii which cover
the Ψ} on each bounded subset Ψ of U . For any C(I,U) ⊂ B and ζ ∈ I, set B(ζ ) =
{u(ζ ) : u ∈ B} ⊂ U . If in C(I,U) B is bounded, then also in U B(ζ ) is bounded and
B(B) ⩾ B(B(ζ )). It is notable that the measureof noncompactness B verifies the
listed characteristics, (see, e.g, (20), (21), (22)) for all bounded subsets Ψ,Ψ1,Ψ2 of
U .

(1) Ψ1 ⊂ Ψ2 ⇒B(Ψ2)⩾B(Ψ1);

(2) B(Ψ1)+(Ψ2)⩾B(Ψ1 +BΨ2) where Ψ1 +Ψ2 = {x+ y : x ∈ Ψ1,y ∈ Ψ2};

(3) max{β (Ψ1),(Ψ2)}⩾ β (Ψ1 +Ψ2);

(4) |λ |B(Ψ)⩾B(λΨ) f or any λ ∈ R.

(5) B({a}∪Ψ) =B(Ψ) f or every a ∈U.

(6) B(Ψ) = 0 ⇐⇒ Ψ is relatively compact in U .

Definition 3. x ∈C(I,U) is a function which defined a mild solution of system (1) if
for each u ∈ L2(I,U) the integral equation

u(ζ ) = Ca(t)A−1(0)g(u)+ Ja(ζ )u1 +
∫

ζ

0
(ζ −ϖ)a−1Ka(ζ −ϖ)

[
f
(
ϖ ,u(ϖ),Gu(ϖ)

)
+Bv(ϖ)

]
dϖ .

is satisfied.
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3. Main results

Theorem 1. We get a controllability result of the fractional evolution equations for
the NLC problem including NCSG and the nonlocal functions by excluding Lipschitz
continuity. Let us assume the nonlinear fractional evolution system:

cDau(ζ )+Au(ζ ) = f (ζ ,u(ζ ),Gu(ζ ))+Bv(ζ ), ζ ∈ I
u(0) = A−1(0)g(u)
u′(0) = u1.

where cDa is the Caputo fractional derivative of order 1 < a < 2, operator I=[0,a],
a > 0 is a constant.

Proof. We can write the integral equation

u(ζ )=A−1(0)g(u)+u1t+
1

Γ(a)

∫
ζ

0
(ζ −ϖ)a−1[ f (ϖ ,u(ϖ),Gu(ϖ))+Bv(ϖ)−Au(ϖ)]dϖ .

(2)

u(ζ ) = Ca(t)A−1(0)g(u)+ Ja(ζ )u1 +
∫

ζ

0
(ζ −ϖ)a−1ka(ζ −ϖ) (3)[

f
(

ϖ ,u(ϖ),Gu(ϖ)+Bv(ϖ)−Au(ϖ)

)]
dϖ . (4)

where Ca(ζ ) =
∫

∞

0 Ma(θ)c(ζ aθ)dθ ,
Ia(ζ ) =

∫ t
0 Ca(ϖ)dϖ ,

Ka(ζ ) =
∫

∞

0 aθMaθϖ(ζ aθ)dθ .
Let λ > 0 and the Laplace Transform is given

ν(λ ) = L[u(ζ )](λ ) =
∫

∞

0
e−λϖ u(ϖ)dϖ

and µ(λ ) = L
[

f
(
(ζ ),u(ζ ),Gu(ζ )

)
+Bv(ζ )−Au(ζ )

]
(λ )

=
∫

∞

0
e−λϖ

[
f
(
(ζ ),u(ζ ),Gu(ζ )

)
+Bv(v)−Au(v)

]
dϖ .
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Now taking Laplace Transform of (2)

L[u(ζ )] = L[A−1(0)g(u)]+L[u1ζ ]+L
[

1
Γ(a)

∫
ζ

0
(ζ −ϖ)a−1

[
f
(
(ϖ),u(ϖ),Gu(ϖ)

)
+Bv(ϖ)−Au(ϖ)b]dϖ

]
ν(λ ) =

1
λ

A−1(0)g(u)+
1

λ 2 u1 −
1

λ a Aν(λ )+
1

λ a µ(λ )ν(λ )+
1

λ a Aν(λ )

=
1
λ

A−1(0)g(u)+
1

λ 2 u1 +
1

λ a µ(λ )ν(λ )
[λ aI +A

λ a

]
=

1
λ

A−1(0)g(u)+
1

λ 2 u1 +
1

λ a µ(λ )

ν(λ ) = (λ aI +A)−1
λ

a−1A−1(0)g(u)+(λ aI +A)−1
λ

a−2u1

+(λ aI +A)−1
µ(λ ). (5)

Note: For any λ > 0 there exist a bounded inverse operator [λBI +A]−1 ∈ L[E] and

||[λ β I +A]−1||< C
|λ |+1

, I f ζ > 0

.

ν(λ ) = λ
B
2 −1

∫
∞

0
e−λ

B
2 ζ

c(ζ )
[
A−1(0)g(u)

]
dζ +λ

−1
λ

B
2 −1

∫
∞

0
e−λ

B
2 ζ

c(ζ )u1dζ

+
∫

∞

0
e−λ

B
2 ζ

ϖ(ζ )µ(λ )dζ

. Let φ(θ) =
a

θ a +1
Ma(θ

−a) , θ ∈ (0,∞). Taking its Laplace

∫
∞

0
e−λ θ

φa(θ)dθ = e−λ a
. (6)
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For a ∈ (1/2,1) using equation (5) we have

λ
a−1

∫
∞

0
c(ζ )A−1(0)g(u)dζ

=
∫

∞

0
a(λ t)a−1e−(λζ )c(ζ a)A−1(0)g(u)dζ

=
∫

∞

0
(− 1

λ
)

d
dζ

(∫
∞

0
e−λζ

φ(θ)dθ

)
c(ζ a)A−1(0)g(u)dζ

=
∫

∞

0

∫
∞

0
θφa(θ)e−λ tθ c(ta)A−1(0)g(u)dθdt

=
∫

∞

0
e−λζ

[∫ ∞

0
φa(θ)c(

ζ a

θ a )A
−1(0)g(u)dθ

]
dζ

= L
[∫ ∞

0
Ma(θ)c(ζ a

θ)A−1(0)g(u)dθ
]
dζ

= L
[
Ca(t)A−1(0)g(u)

]
(λ ). (7)

since L[H1(t)](λ ) = λ−1.
By using Laplace Convolution Theorem

λ
−1

λ
a−1C(ζ )u1dζ = L

[
H1(ζ )

]
(λ ).L

[
Ca(ζ )u1

]
(λ )

= L
[
(H1 ∗Ca)(ζ )u1

]
(λ ). (8)

Similarly, ∫
∞

0
e−λaζ S(ζ )µ(λ )dζ

=
∫

∞

0
aζ

a−1e(−λaζ )S(ζ a)µ(λ )dζ

=
∫

∞

0

∫
∞

0
aζ

a−ζ
φa(θ)e−λaζ S(ζ a)µ(λ )dθdζ

= L
[∫

∞

0
aζ

a−1Ma(θ)S(ta
θ)dθ

]
(λ ).L

[
f(ζ ,u(ζ ),Gu(ζ ))+Bv(ζ )

]
(λ )

= L
[∫

ζ

0
(ζ −ϖ)a−1Ka(ζ −ϖ)(f(ϖ ,u(ϖ),Gu(ϖ))+Bv(ϖ)

)]
. (9)
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By using equation (6),(7),(8), in (2) we get

u(ζ )=Ca(ζ )A−1(0)g(u)+Ja(ζ )u1+
∫ ζ

0 (ζ −ϖ)a−1Ka(ζ −ϖ)

[
f
(
ϖ ,u(ϖ),Gu(ϖ)

)
+

Bv(ϖ)

]
dϖ .

This complete the proof. ■

Lemma 2. (25; 26; 27) Let B = {vn} ⊂C(I,U) be countable. If there exist ϕ ∈ L1(I)
in such a way that ∥vn(ζ )∥⩽ ϕ(ζ ) a.e. ζ ∈ I, n = 1,2,3,..., then B

(
{
∫

I vn(ζ )dt : n ∈
N}

)
⩽ 2

∫
I B(B(ζ ))dζ .

To corroborate our conclusion, for every h∈C(I,U) firstly we take the linear evolution
equation non-local problem (LNP).

Dau(ζ )+Au(ζ ) = h(ζ ) ζ ∈ I
u(0) = A−1(0)g(u)
u′(0) = u1.

(10)

For the LNP (10), we get the following outcomes.

Lemma 3. Assume that the conditions

(H0) |A−1(0)|< 1
N

holds. Then LNP (10) has a unique mild solution x ∈C(I,U) spec-
ified by

u(ζ ) = A−1(0)g(u)Ca(ζ )S+ Ja(ζ )u1 +
∫

ζ

0
(ζ −ϖ)Ka(ζ −ϖ)h(ϖ)dϖ ζ ∈ I. (11)

where S = (1−A−1(0)g(u))−1.

Proof. From the condition (H0), we get
∥A−1(0)Ca(ζk)∥⩽ |A−1(0)|.∥Ca(ζk)∥< 1
According to the operator spectrum theorem, S := (1−A−1(0))−1 exists as operator
and is bounded.
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Moreover, by Neumann expression, we acquired

∥S∥⩽
∞

∑
m=0

∥A−1(0)Ca(ζk)∥n =
1

1−
∥A−1(0)Ca(ζk)∥⩽

1
1−N|A−1(0)|

.

We can easily see that LNP (see (9)), (10) has a exclusive mild solution x ∈ C(I,U)

expressed by

u(ζ ) =Ca(ζ )u(0)+ Ja(ζ )u1 +
∫

ζ

0
(ζ −ϖ)a−1Ka(ζ −ϖ)h(ϖ)dϖ . (12)

From equation (11)

u(0) =
1

(1−A−1(0)Ca(ζa))

[
A−1(0)Ja(ζa)u1

+A−1(0)
∫

ζa

0
(ζa −ϖ)a−1Ka(ζa −ϖ)h(ϖ)dϖ

]
.

Since 1−A−1(0)Ca(ζa) has a bounded inverse operator S, we acquired

u(0) = A−1(0)S
∫

ζ

0
(ζ −1)a−1Ka(ζ −ϖ)h(ϖ)dϖ

Putting the values we get

u(0) = A−1(0)S
∫

ζ

0
(ζ −1)a−1Ka(ζ −ϖ)h(ϖ)dϖ . (13)

where S = (1−A−1(0)g(u))−1. From equations (12) and (13), we know that function
x ∈ C(I,U) satisfies (11). Conversely, can prove thewe function x ∈ C(I,U) specified
in (11) is a mild solution of the linear evolution equation nonlocal problem (10).
This complete the proof. ■

International Journal of Advancements in Mathematics 2(2), 2022 92

http://www.scienceimpactpub.com/IJAM


Controlability results

(H1) An equicontinuous semigroup △(ζ )(ζ ⩾ 0) of uniformly bounded linear oper-
ator generated by −A in U .

(H2) (i) Define the Linear operator W : L2(I,U)→U by

Wu =
∫

σ

o
(σ − s)Ka(σ − s)Bv(s)ds.

has W−1 an inverse operator where the value is taken L2(I,U)kerW and ∃ N1 >

0,N2 > 0 as two constants in such a way that ∥B∥⩽ N1,∥W−1∥⩽ N2,

(ii)∃ a constant a1 ∈ (0,a) and a function Zw ∈ N
1

a1 (I,R+) such that
Zw(ζ )β (D)⩾ β (W−1(D)(ζ )), ζ ∈ I for any countable subset D ⊂U .

(H3) The function f : I ×U ×U →U satisfies,
(i) for a.e t ∈ I and function f (ζ ,.,.) : U ×U →U is continuous and the function
f (.,x,y) : I →U strongly measurable for each (x,y) ∈U ×U ,

(ii) for any r̃ > 0, ∃ a constant a2 ∈ (0,a) and f unction Kr̃ ∈ L
1

a2 (I,R+)

such that
sup{∥ f (ζ ,x,y)∥ : ∥x∥⩽ r̃,∥y∥⩽ K∗r′}⩽ Kr̃(ζ ), ζ ∈ I,

where Kr̃ satisfies lim
r̃→∞

inf
1
r̃
∥Kr̃∥

L
I

a2
△r̃ < ∞,

(iii) ∃ a3 ∈ (0,a) and a function ξ ∈ L
1

a3 (I,R+) in such a way that
β ( f (ζ ,D1,D2))⩽ ξ (ζ )(β (D1)+β (D2)) ζ ∈ I for any countable subset D1,D2 ⊂
U.

Let
φ(ζ ) =Ca(ζ )A−1(0)g(u)+Ka(ζ )u1

.
Applying the hypothesis H1(i) for every x1 ∈U . We define a control function v(ζ ) =
v(ζ ;x) by

v(ζ ;x)=W−1
[

x1−φ(σ)−
∫

σ

0 (σ −ϖ)a−1Ka(σ −ϖ) f (ϖ ,u(ϖ),Gu(ϖ))dϖ

]
(ζ ), ζ ∈

International Journal of Advancements in Mathematics 2(2), 2022 93

http://www.scienceimpactpub.com/IJAM


I. For any sake of brevity, we write

Q(ζ ;x) = Bv(ζ ;x)+ f (ϖ ,u(ϖ),Gu(ϖ)).

Q̃(x) = φ(ζ )+
∫

σ

0
(σ −ϖ)a−1KaQ(ϖ ,x)dϖ .

Now introduce the notations

Ei =
σa−ai

(ai +1)
, ai =

a−1
1−ai

i = 1,2,3;

N3 = E1∥Iw∥
L

1
a1

: N4 = E3∥ξ∥
L

1
a3

For every r̃ > 0, Let Br̃ := {x∈C(I,U) : ∥x∥c ⩽ r̃}. From Lemma (1) and (2),it proceed
the following results.

Lemma 4. Suppose that (H2)(i) and (H3)(ii) hold. Then we get
∥Q(ζ ;x)∥⩽ N1N2∥x1∥+N1N2∥x2∥+LuE2∥Kr̃∥

L
I
a2

+Kr̃(ζ )

∥Q̃(x)∥⩽ NN1N2σa|A−1(0)|
Γ(a+1)(1−N|A−1(0)|)

(
∥x1∥+∥x2∥

)
+

NE2|A−1(0)|
Γ(a)(1−N|A−1(0)|)

(
Luba

a
+

1
)
∥Kr̃∥

L
I

a2

for any x ∈ Br′ ,where Lu =
NN1N2

Γ(a)(1−N|A−1(0)|)
.

Proof. For any ζ ∈ I and x ∈ Br̃, from Lemma(1) and Lemma(4), we have

∥Bv(ζ ;x)∥ ⩽ N1N2∥x1∥+N1N2∥φ(ζ )∥+N1N2

∥
∫

σ

0
(σ −ϖ)a−1Ka(σϖ) f (ϖ ,u(ϖ),Gu(ϖ))dϖ∥

⩽ N1N2∥x1∥+∥x2∥+
N2N1N2A−1(0)

Γ(a)(1−N|A−1(0)|)

+
NN1N2

Γ(a)

∫
σ

0
(σ −ϖ)a−1Ka(σ −ϖ)Fr′(ϖ)dϖ

⩽ N1N2∥x1∥+N1N2∥x2∥+LuE2∥Kr̃∥
L

1
a2
.
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Hence we can observe that
∥Q(ζ ;x)∥⩽ N1N2∥x1∥+N1N2∥x2∥+LuE2∥Kr̃∥

L
1
a2

+Kr̃(ζ ).

for all ζ ∈ I and x ∈ Br̃. Futhermore, we obtain

∥Q̃(x)∥ ⩽ ∥φ(ζ )∥+ |A−1(0)|
1−N|A−1(0)|

.
N

Γ(a)

∫
ζ

0
(ζ −ϖ)a−1∥Q(ϖ ;x)∥dϖ

⩽ ∥φ(ζ )∥+ |A−1(0)|
1−N|A−1(0)|

.
N

Γ(a)

∫
ζ

0
(ζ −ϖ)a−1[N1N2∥x1∥+N1N2∥x2∥

+ LuE2∥Kr̃∥
L

I
a2

+Kr̃(t)
]
dϖ

⩽
NN1N2σa|A−1(0)|

Γ(a+1)(1−N|A−1(0)|)

(
∥x1∥+∥x2∥

)
+

NE2|A−1(0)|
Γ(a)(1−N|A−1(0)|)

(
Luσa

a
+1

)
∥Kr̃∥

L
I
a2
.

This complete the proof. ■

Define an operator Y : C(Y ;U)→C(I;U) by

(Yu)(ζ ) = Q̃(x)+
∫

ζ

0
(ζ −ϖ)a−1Ka(ζ −ϖ)Q(ϖ ;x)dϖ , ζ ∈ I. (14)

Lemma 5. Let (H2)(i) and (H3)(i,ii) hold. Then the operator Y : Br̃ → Br̃ is continu-
ous proceeded that

NηE2

Γ(a)(1−N|A−1(0)|)

[
Luσa

a
+1

]
< 1. (15)

Proof. Firstly, we verify that Y (Br̃)⊂ Br̃ for r̃ > 0. If this was not the case, ∃ x ∈ Br̃
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and ζr̃ ∈ I in such a way that ∥(Yu)(t)∥⩾ r̃. By Lemma (1) and (4), we have

r̃ ⩽ ∥Q̃(x)∥+∥
∫

ζ

0
(ζ −ϖ)a−1Ka(ζ −ϖ)Q(ϖ ;x)dϖ∥

⩽ ∥Q̃(x)∥+ N
Γ(a)

∫ tr̃

0
(tr̃ −ϖ)a−1[N1N2∥x1∥+N1N2∥x2∥+LuE2∥Kr̃∥

L
I

a2

+Kr̃(ζ )∥dϖ
]

⩽
NN1N2σq

Γ(q+1)(1−N|A−1(0)|)

(
∥x1∥+∥x2∥

)
+

NE2

Γ(a)(1−N|A−1(0)|)

(
Luσa

a
+1

)
∥Kr̃∥

L
I

a2
.

Dividing both sides by r̃ and taking lower limit as r̃ →+∞ , we get
NηE2

Γ(a)(1−N|A−1(0)|)

(
Luσa

a
+1

)
⩾ 1.

Which is a contraction. Hence Y (Br̃)⊂ Br̃ for some r̃ > 0.
Now, we will that Y : Br̃ →Br̃ is continuous. For this target, we suppose that ym → y0 in
Br̃. We describe Fm(ϖ) = f (x,ym(ϖ),Gym(ϖ)) and F0(ϖ) = f (x,y0(ϖ),Gy0(ϖ)).By
(H3)(i,ii) and Lebesgue dominated convergence theorem, we get∫ tn

0 (ζ −ϖ)a−1∥Fm(ϖ)−F0(ϖ)∥dϖ ∈ 0, ζ ∈ I(m →+∞)

By the definition of v(ζ ;x), we get

∥v(ζ ;ym)−v(ζ ;y0)∥⩽
N2N2∥A−1(0)∥

Γ(a)(1−N|A−1(0)|)
∥φ(ϖ)∥+ NN2

Γ(a)
∫

σ

o (σ −ϖ)a−1∥Fm(s)−

F0(ϖ)∥dϖ → 0(m →+∞).
Consequently,
∥Q(ζ ;yn)−Q(ζ ;y0)∥⩽ N1∥v(ζ ;ym)− v(ζ ;y0)∥+∥Fm(ζ )−F0(ζ )∥→ 0(n →+∞)

∥Q̃(ym)−Q̃(y0)∥⩽ ∥φ(ζ ,ym)−φ(ζ ,y0)∥+
∫ ζ

0 (ζ −ϖ)a−1∥Q(ϖ ;ym)−Q(ϖ ;y0)∥dϖ →
0(m →+∞).
Then we get,

∥(Y ym)(ζ )− (Y y0)(ζ )∥ ⩽ N∥Q̃(ym)− Q̃(y0)∥+
N

Γ(a)

∫
ζ

o
(ζ −ϖ)a−1

∥Q(ϖ ;ym)−Q(ϖ ;y0)∥dϖ → 0(m →+∞)
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Which gives that Y : Br̃ → Br̃ is continuous. This complete the proof. Now, we can
describe the main results of this paper. ■

Theorem 2. Suppose that the hypothesis (H2)−(H3) be satisfied. Then the fractional
non-local system (1) is controllable on I provided that (15)

λ △ 2NN4(1+2K∗)
Γ(a)(1−N|A−1(0)|)

[N3N5 +1]< 1. (16)

where N5 =
2NN1

Γ(a)(1−N|A−1(0)|)
.

Proof. We can state an operator Y : C(I,U)→C(I,U) as (3.1). By taking (5) we can
observe that Y : Br̃ → Br̃ is continuous. We have to justified that Y satisfies Monchs
condition. For a particular aims, Let Y ⊂ Br̃ be countable and Y ⊂ co({0}∪Y (D)).
We will provide that Y is relatively compact. By using the characteritics of measure of
noncompactness B, it is sufficient to demonstrate β (D) = 0.
Mainly, we show that Y (D) is continuous on I. For 0 ⩽ _1 < δ2 ⩽ b, which is denoted
by
S1 = ∥Ca(δ2)Q̃(D)−Ca(δ1)Q̃(D)∥
S2 = ∥Ja(δ2)Q̃(D)− Ja(δ1)Q̃(D)∥
S3 = ∥

∫ δ1
0 [(δ1 −ϖ)a−1 − (δ2 −ϖ)a−1]Ka(δ2 −ϖ)Q(ϖ ;D)dϖ∥

S4 = ∥
∫ δ1

0 (δ1 −ϖ)a−1[Ka(δ2 −ϖ)−Ka(δ1 −ϖ)]Q(ϖ ;D)dϖ∥
S5 = ∥

∫ δ2
δ1
(δ2 −ϖ)a−1Ka(δ2 −ϖ)Q(ϖ ;D)dϖ∥.

Then we obtain
∥(Y (D)(δ2))− (Y (D)(δ1))∥⩽ S1 +S2 +S3 +S4 +S5

From (H1), we can easily see that S1,S2 → 0 as δ2−δ1 → 0, from Lemma (1) and (5),
we have

S3 ⩽
N
(

N1N2∥x1∥+LuE2∥Kr̃∥
L

1
a2

)
Γ(a)

∫ δ1
0 |(δ2 −ϖ)a−1 − (δ1 −ϖ)a−1|dϖ

+
N∥Kr̃∥

L
1

a2
)

Γ(a)

(∫ δ1
0 |(δ2 −ϖ)a−1 − (δ1 −ϖ)a−1|

1
1−a2 dϖ

)1−a2
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S5 ⩽
N(N1N2∥x1∥+LuE2∥Kr∥

L
1

a2
)

Γ(a+1)
(δ2 −δ1)

a
+

N∥Kr∥
Γ(a)(a2 +1)a−a2

(δ2 −δ1)
a−a2

Which implies that S3 → 0 as δ2 − δ1 → 0. If δ1 = 0,0 < δ2 ⩽ σ , It is clear that
S4 = 0 f or δ1 > 0 and σ ∈ (0,δ1) small enough, We have

S4 ⩽ ∥
∫

δ1−σ

0
(δ1 −ϖ)a−1[Ka(δ2 −ϖ)−Ka(δ1 −ϖ)]Q(ϖ ;D)dϖ∥

+
∫

δ1

δ1−σ

(δ1 −ϖ)a−1[Ka(δ2 −ϖ)−Ka(δ1 −ϖ)]Q(ϖ ;D)dϖ∥

⩽

[N
(

N1N2∥x1∥+LuE2∥Kr̃∥
L

1
a2

)
a

+
∥Kr̃∥

L
1

a2
(δ a

1 −σa)

(a2 +1)1−a2

]
.

sup
ϖ∈[0,δ1−σ ]

∥Ka(δ2 −ϖ)−Ka(δ1 −ϖ)∥

+
2N(N1N2∥x1∥+LuE2∥Kr̃∥

L
1

a2
)σa

Γ(a+1)
+

2N∥Kr̃∥
L

1
a2

σa−a2

Γ(a)(a2 +1)1−a2
.

The supposition (H1) guarantees that S4 → 0 as δ2 − δ1 → 0 and σ → 0. Therefore
Y (D) is equicontinuous on I.
Now we have to check B(Y (D)). From (H2)(ii) and (H3)(iii), we get
B(Bv(ϖ ;D))⩽ N4N5(1+2K∗)Kw(ϖ)B(D),

B(Q(ϖ ;D))⩽ N4N5(1+2K∗)Kw(ϖ)β (D)+(1+2K∗)ξ (ϖ)B(D)

and

B(Q̃(D))⩽
2NN4(1+2K∗)|A−1(0)|

Γ(a)(1−N|A−1(0)|)
[N3N5 +1]

for ϖ ∈ [0,ζ ],ζ ∈ I. Moreover, we have

B(Y (D)(ζ ))⩽ NB(Q̃(D))+
2N

Γ(a)
∫ ζ

0 (ζ −ϖ)a−1B(Q(ϖ ;D))dϖ

⩽
2NN4(1+2K∗)

Γ(a)(1−N|A−1(0)|)
[N3N5 +1].B(D) = λβ (D).

It proceeds from Y (D) which continuous and boundedness
β (Y (D)) = maxζ∈I B(Y (D)(ζ ))⩽ λB(D)
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Therefore,
β (Y (D))⩽B(co({0}∪Y (D)))⩽B(Y (D))⩽ λB(D)

Since λ < 1, we get B(D) = 0. Then D is relatively compact.
So by 4 , one fix point x ∈ Br̃ which Y has, it gives a mild solution of the fractional
non-local system (1) is s controllable on I and satisfied x(b) = x1.
This summarizes the proof. ■

Remark 1. 1 , relating to a particular nonlocal function, we present another defini-
tion of the mild solutions of system (1). According to following newly definition, we
state a control function and verify the system (1) of controllability including NCSG.
Therefore, in this way we get relevant results exist in (28). Let the supposition (H3)
be converted into the form which listed below (H3)′. The function f : I×U ×U →U
satisfied the listed conditions.

(i) for a.e ζ ∈ I and function f (ζ ,.,.) : U ×U → U is equi-continuous and for
some (x,y) ∈U ×U , have a strongly measurable f (.,x,y) : I → X .

(ii) for some r̃ > 0, there exist a constant a2 ∈ (0,a) and f unction K̃ ∈L
1

a2 (I,R+)

such that sup{∥ f (ζ ,x,y)∥ : ∥x∥⩽ r̃,∥y∥⩽ K∗r̃}⩽ K̃(ζ ), ζ ∈ I

(iii) There exists a constant a3 ∈ (0,a) and a function ξ ∈ L
1

a3 (I,R+) in such a
way that
β ( f (ζ ,D1,D2))⩽ ξ (ζ )(β (D1)+β (D2)) ζ ∈ I for any countable subset D1,D2 ⊂
U .

Corollary 1. Let the supposition (H0)-(H2) and (H3)′ be satisfied. Then given that
(15) the fractional non-local system (1) is controllable on I

Remark 2. In supposition (H3)′(ii), K̃ of 0< r̃ is independent. In particularly, bounded
function is f (ζ ,x,y). Then the inequality (15) automatically takes place due to ρ = 0.
So, Corollary 1 is most preferable to utilize in application.
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4. Application

To emphasize the main result, we suppose the fractional dynamical system of the
form

∂
5
3

∂ t
5
3

u(t,y) =
∂u(ζ ,y)

∂y
+

e−2

1+ eζ

[
u(ζ ,y)+

∫ ζ

0 (ζ − s)2u(s,y)ds
]
+ωκ(ζ ,y) ζ ∈ I

u(ζ ,1) = u(ζ ,2) = 0 ,u(1,y) = arctan
1

2k2 g(u)

u′(0,y) = u1(y).
(17)

Proof. where 0 < ω and b > m > 0 are constant, κ : I × (1,2)→ (1,2) is continuous
on I = [0,b].
Let U = X =C([1,2]) and if A : D(A)⊂U →U be defined by
Aς =−ς ′ : ς ∈ D(A)
D(A) = {ς ∈U,ς(1) = ς(2) = 0}.
As we know very clearily that in U an equicontinuous semigroup △(0 ⩽ ζ ) genersted
by −A and it is given by
△(ζ )ς(s) = ς(ζ + s)
for ς ∈U, T hen △(ζ )(0 ⩽ ζ ) is not a compact semigroup in U and supζ∈I ∥△(ζ )∥⩽
1.
Define

u(ζ )(y) = u(ζ ,y), D
5
3 u(ζ )(y) =

∂
5
3

∂ζ
5
3

u(ζ ,y)

f (ζ ,u(ζ ),Gu(ζ ))(y) =
∂u(ζ ,y)

∂y
+

e−2

1+ eζ

[
u(ζ ,y)+

∫
ζ

0
(ζ − s)2u(s,y)ds

]
u(ζ )(y) = κ(ζ ,y), A−1(0) = arctan

1
2k2 .
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Then for some x ∈ Br̃ := {x ∈C(I,U);∥x∥c ⩽}, ζ ∈ I, we have

∥ f (ζ ,u(ζ ),Gu(ζ ))(y)∥ ⩽
∂u(ζ ,y)

∂y
+

e−2

1+ eζ

[
∥u(ζ ,y)∥+

∫
ζ

0
∥(ζ − s)2u(s,y)∥ds

]
⩽

(3+b3)e−2ζ r̃
3(1+ eζ )

⩽
(3+σ3)r̃

6
.

It is mmostly knowning that the supposition (H3) takes place for γ =
3+σ3

6
and ξ (ζ )=

1
2 f or all ζ ∈ I. From

∥A−1(0)∥⩽ ∥arctan
1

2k2 ∥=
π

4
< 1.

As the supposition (H0) takes place. For y ∈ (1,2), the operator W is described by

(W (ζ ))(y) =
∫

σ

0
(σ − s)

−1
4 K 3

4
(σ − s)Bv(s)ds.

where
{C 5

3 (t)
}0⩾ζ , {K 5

3 (t)
}0⩾ζ and {J 5

3 (ζ )
}0⩾ζ are defined by

C 5
3 (ζ )ς(s)

=
∫

∞

0
M 5

3
(θ)ς(ζ

5
3 θ + s))dθ

K 5
3
(ζ )ς(s) =

5
3

∫
∞

0
θM 5

3
(θ)ς(ζ

5
3 θ + s))dθ

J 5
3
(ζ )ς(s) =

∫
ζ

0
C 5

3
(s)ς(ζ

5
3 θ + s))ds.

where M 5
3
(θ) =

5
3

θ
−8
5 ρ 5

3
(θ

−3
5 ) f or 0 < θ < ∞ and ρ 5

3
(θ) is given by

ρ 5
3
=

1
π

∞

∑
m=1

(−1)m−1
θ

−5m
3 −1

Γ(m
5
3
+1)

m!
sin(

5mπ

3
), θ ∈ (0,∞)
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. ■

Conclusion

In summary, our study focused on examining the precise controllability of non-
local Cauchy problems related to fractional integro-differential evolution equations
in Banach spaces with non-compact semigroups and non-local functions. To achieve
this, we established a relevant definition for mild solutions, utilized a specific type
of non-local function, and employed the Mönch fixed point theorem to demonstrate
exact controllability in the case of non-compact semigroups. As a result, our findings
demonstrate the effectiveness of these theoretical outcomes.
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