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Abstract In this paper, we will examine the facts in the image of infinite time delay on the mild
solution’s solvability and fractional integro-differential Evolution Equation of Banach space’s op-
timal control choosing order δ ∈ (1,2). For investigation of mild solution of the system, contin-
uation, uniqueness and the existence of the solution with the help of grown-wall inequality will
be discussed shortly. After constructing the lagrange problem, the demonstration of actuality of
optimal control of fractional integro delay system is being proceed. And at the end we will discuss
the regarding result by an adequate example.
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1. Introduction

The most budding branch of applied mathematics is fractional calculus. A lot of
developments and upbeat work has been done in this category. No one can deny the
impulse of fractional calculus and differential equation but it leads to become more
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consequential day by day. This work became up rear after the liaison of L.Hospital
and Leibnitz. In the historical record the systematic investigation on optimal control
motors has been done in 1960. Podlubny,s monographs (1), Kilbas et al. (2), Zhou
(3; 4) and papers (5; 6; 7; 8; 9) and the references therein show that ordinary and dif-
ferential equations containing fractional derivatives have significantly advanced in the
modern era The attracted work has been done on the existence of being mild solution
of order δ ∈ (1,2) for the fractional differential and integro-differential equations in
contemporary. The two fractional evolution systems are taken along Riemann-liouville
derivative with the help of resolvent family by Li et al. (10). The being and unique-
ness of mild solution for nonlocal fractional differential equation is deliberate by(11)
by installing resolvent family. Li (12), (14) scrutinize the constancy of mild solution
for fractional abstract cauchy problems with the help of analytical solution operators.
As well as, Kian and Yamamoto (13) scrutinize the existence and Strichartz evaluates
the solutions for semi linear fractional wave equations by the method of eigenvalue
elaboration in bounded domain. Many of the prime controllability and fascinating re-
sults on the fractional differential systems initiate in (15) with order δ ∈ (0,1) and in
(16; 17) with order δ ∈ (1,2).

At present fractional evolution equation,s optimal control has striking the role
models in different aspects of Science, Engineering and Economy. This field makes
more advancements exceptionally in control doctrine, biological science, physical sci-
ence, electronic media, elasticity, electromagnetic, electro dynamic process etc. It is
owing to this stipulate of optimal power of fractional evolution equation in allied area
of cram, conjecture and its relevance has been improved to a enormous level. Loads
of analyzers are geared up to hop away ahead it to carve up their involvement in this
fastidious branch. A fabulous work has been done in the category of optimal controls
and fractional functional evolution equation by Wang et al. (18) in 2011. He inves-
tigate after choosing α-norm for mild solution’s existence of semi linear fractional
functional evolution equation, optimal control. The examination for infinite dimen-
sional space on fractional finite time delay system of evolution equation and optimal
controls has been done by Wang et al. in 2011 (19). His concluding explore leads to
the Lagrange problem. Due to his ardent concentration, the same author (20), expand
this gate of knowledge to the class of time optimal control of non linear fractional
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integro-differential controlled system associated with analytic semigroup in Banach
space. Moreover the same author also work on fractional integro-differential evolu-
tion system,s solvability and optimal controls with infinite delay in 2012(21) choosing
order(0,1). In 2017, Jun Du et al. (22) established the controllability for a rare form of
nonlocal and arbitrarily delayed fractional neutral integro-differential evolution equa-
tions. In the course of time, some researches subsidize tHeir attempts to increase order
by (1,2). For instance, many researchers analysed fractional equations of Caputo and
Riemann-Liouville’s Sobolev typ with orders of (1,2) (23). Consider the system of
nonlinear fractional integro-differential evolution system as follows:{

c
0Dδ

ξ
u(ξ ) = Eu(ξ )+F(ξ ,uξ ,

∫ ξ

0 f (ξ ,y,uy)dy)+G(ξ )x(ξ ), ξ ∈ τ = [0,T ]
u(ξ ) = φ(ξ ) ∈ A ,u′(ξ ) = φ ′(ξ ) ∈ A ,−∞ ⩽ ξ ⩽ 0.

(1)

where c
0Dδ

ξ
is Caputo fractional derivative of order δ ∈ (1,2), operatorE : D(E)→ ς

is cosine family {C (ξ )}
ξ⩾0 on a Banach space’s infinitesimal generator ς which is

strongly continuous, F and f are ς -value functions specified later, G is a linear oper-
ator from S into ς , The chronicles define uξ : ]−∞,0]→ ς by uξ = u(ξ + y), related
to any abstract space A . The structure of this paper is as follows. The notations and
helpful ideas for fractional integro-differential and the cosine family are recalled in
Section 2. An operator will be introduced in this paper which differs from the preced-
ing one in the families of operators. Before moving on to the next stage of the study,
it should be noted that this operator is continuous and linearly bounded. Additionally,
the analysis demonstrate problem is mildly solvable, that the mild solution is distinct,
facts in Section 4 are continuously dependent. In section 5, we will demonstrate that
for Lagrange problem, there are fractional optimal controls.

2. Preliminaries

Consider the two Banach spaces ς and S with the norms | · |ς and | · |S, commonly.
£(ς ,S) represent linear operator’s space from ς to S set up with norm ∥ · ∥£(ς ,S). Spe-
cially , when ς = S, then £(ς ,S) = £(ς ,S) = £(ς) and ∥ ·∥£(ς ,S) = ∥ ·∥£(ς ,ς) = ∥ ·∥£(ς).
Let a Banach space C(]−∞,ao],ς),a0 ⩾ 0 of continuous functions from ]−∞,a0] to ς

with usual sup-norm. We represent C(]−∞,a0],ς) frequently by C−∞,a0 and its norm
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by ∥ · ∥−∞,a0 . If a0 = τ we represent this space by C−∞,τ and its norm by ∥ · ∥−∞,τ .
If a0 = 0, we represent this space by C−∞,o and its norm by ∥ · ∥−∞,0. Surely, for any
u ∈ C−∞,τ and ξ ∈ τ , define uξ (s) = u(ξ + s) for −∞ ⩽ s ⩽ 0, then uξ ∈ C−∞,0. We
denote G by R(µ,G) = (µI −G)−1 ∈ L(ς) as a resolvent set.

Remembering the definitions and characteristics of fractional calculus, we suggest
to see (1; 2).

The fractional integral of order δ ∈ R+ with the lower limit zero for a function u
is defined as

Iδ
0+u(ξ ) = (gδ ∗u)(ξ ) =

1
Γ(δ )

∫
ξ

0
(ξ − y)δ−1u(y)dy,

The right-wards defined on [0,∞), here Gamma is Euler gamma function and the sign
∗ signifies convolution.

gδ (ξ ) =
ξ δ−1

Γ(δ )
, if ξ > 0; gδ (ξ ) = 0, if ξ ⩽ 0.

In case δ = 0, we signify g0(ξ ) = δ (ξ ), For a function u : [0,∞)→ R, the Riemann-
Liouville fractional derivative of order δ ∈ R+ is defined as

L
0Dδ

ξ
u(ξ ) =

dn

dξ n (gn−δ ∗u)(ξ ), ξ ⩾ 0, n−1 < δ < n,

For function u : [0,∞)→ R, Caputo derivative of order δ ∈ R+ is defined as

c
0Dδ

ξ
u(ξ ) =L

0Dδ

ξ

(
u(ξ )−

n−1

∑
k=0

w(k)(0)
k!

ξ
k
)
, ξ ⩾ 0, n−1 < δ < n.

Lemma 1. (see(29, Lemma1.2)). Suppose that u ∈ C0,τ satisfies the following in-
equality:

|u(ξ )|⩽ a0 +b0
∫

ξ

0
(ξ − s)b−1∥u(s)∥−r,0ds, ξ ∈ τ,u(ξ ) = φ(θ), −∞ ⩽ ξ ⩽ 0,
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constant a0,b0 ⩾ 0. A positive constant M ∗ exists there which is independent of a0 in
such a way |u(ξ )|⩽ M ∗(a0), for all ξ ∈ τ .

Lemma 2. (see(30, Lemma 2.8)). A function W : τ → ς is Bochner integrable and
measurable, if ∥W∥ is Lebesque integrable.

Lemma 3. (see(31, Problem 23.9)). For every φ ∈ La(τ,ς) with 1 ⩽ a <+∞,

lim
h→0

∫
τ

0
|φ(ξ +h)−φ(ξ )|adξ = 0

here , φ(s) = 0 for s /∈ τ .

Definition 1. If C (0) = I, C (y+ ξ )+C (y− ξ ) = 2C (y)C (ξ ) for all y,ξ ∈⩾ 0 and
C (ξ )x is equicontinuous in ξ on [0,∞) for every constant point x ∈ ς then bounded
linear operators {τ(ξ )}ξ⩾0’s family mapping the Banach space ς into itself only .

Cosine family and continuous sine family defined by {S (ξ )}ξ ⩾ 0:

S (ξ )x =
∫

ξ

0
C (y)xdy, x ∈ ς , ζ ⩾ 0.

Definition 2. The linear operator E, is defined as

D(E) = u ∈ ς ; lim
ξ→0

Eξ u = lim
ξ→0

Y (ξ )u−u
ξ

exists;

consider the infinitesimal generator E of continuous cosine family cosine family
{T (ξ )}

ξ⩾0 in Banach space ς . Let M = supξ∈τ

{
∥Y (ξ )∥(ς)

}
be finite number. Sup-

pose D(τ,ς), be continuous function’s Banach space from τ to ς with usual supreme
norm ∥u∥D = supξ∈τ {∥u(ξ )|∥}.

Now we use the fundamental definition of the phase space A introduced by Kato
and Hale (35). Suppose A be function’s linear face mapping ]−∞,0] to ς having semi
norm ∥ · ∥A and satisfying the axioms:

(P1) If u :]−∞,0]→ ς , such that u0 ∈ A then for each ξ ∈ τ , the listed conditions
satisfied:
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(i) uξ is in A ,

(ii) ∥u(ξ )∥⩽ H∗∥uξ∥A ,

(iii) ∥uξ∥A ⩽ K∗(ξ )sup∥u(y)∥ : 0 ⩽ y ⩽ ξ}+P(ξ )∥u0∥A

where H∗ ⩾ 0 is a constant, K∗ : τ → [0,+∞] is continuous,P : [0,+∞]→
[0,+∞] is bounded and H∗,K∗,P are independent of u.

(P2) For the function u in (P1),xξ is a A -valued function in τ .

(P3) The A is complete.

Define A D := u :]−∞,0]→ ς ,u|]−∞,0] ∈ A and u|τ ∈ D(τ,ς) and let ∥ · ∥A D be
the semi norm in A D define by ∥u∥A D = ∥u0∥A +supy∈τ{∥u(tξ )∥}. it is not difficult
to understand A D ,∥·∥A D is a Banach space. Describe a set A D0 := s ∈ A D : s(0)=
0 ∈ A and let ∥ · ∥A D0 := ∥s0∥A + supy∈τ{∥s(ξ )∥} and A D0,∥ · ∥A D0 is a Banach
space.

3. Existence and Uniqueness

Here, we establish system’s existence and uniqueness (1). Let E be infinitesimal
generator of a strongly continuous cosine family of {C(ξ )}ξ⩾0 which is uniformly
bounded linear operators, i.e., that M ⩾ 1 exists such that ∥C(ξ )∥L(ς) ⩽ M, for ξ ⩾ 0.
For convenience, let n = δ/2 with δ ∈ (1,2). The following assumptions are listed:

(H1) F : τ ×A × ς → ς satisfies:

(i) For ξ ∈ τF is measurable.

(ii) For arbitrary ϖ1,ϖ2 ∈ A , Ψ1,Ψ2 ∈ ς satisfying ∥ϖ1∥A , ∥ϖ2∥A , ∥Ψ1∥,
∥Ψ2∥ ⩽ ρ, ∃LF(ρ)> 0 in such a way that

∥F(ξ ,ϖ1,Ψ−1)−F(ξ ,ϖ2,Ψ2∥⩽ LF(ρ)(∥ϖ1 −ϖ2∥A +∥Ψ1 −Ψ2∥)

for all ξ ∈ τ ;

(iii) There exists a constant a0
F > 0 in such a way that ∥F(ξ ,ϖ ,Ψ)∥⩽ a0

F(1+
∥ϖ∥A +∥Ψ∥) for all ϖ ∈ A ,Ψ ∈ ς ξ ∈ τ .

(H2) f : D := {(ξ ,y) ∈ τ × τ|0 ⩽ y ⩽ ξ}×A → ς satisfies:
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(i) For (ξ ,y) ∈ D, f is continuous

(ii) For any ϖ1,ϖ2 ∈ A and (ξ ,y) ∈ D satisfying ∥ϖ1∥A ,∥ϖ2∥A ⩽ ρ , there
exist a L f (ρ)> 0 such that
∥ f (ξ ,y,ϖ1)− f (ξ ,s,ϖ1)∥⩽ L f (ρ)∥ϖ1 −ϖ2∥A

(iii) M f > 0 exists there in such a way
∥ f (ξ ,y,ϖ)∥⩽ M f (1+∥ϖ∥) for all ϖ ∈ A

(H3) Suppose S be separable reflexive Banach from which the control x takes the
values. Operator A ∈ L∞(τ,L(S,ς)).

(H4) Multi-valued map X(·) : τ → 2S\Ω has bounded, closed and convex values, X(·)
is graph measurable and X(·)⊆ Φ, here Φ is bounded set in S.

A measurable set is described by

Xa0d0 = {w(·) : τ → S strongly measurable. s(ξ ) ∈ X(ξ )a.e}

. Obviously, Xa0d0 ̸= Ω, and Xa0d0 ⊂ Lm(τ,W )(1 < m < +∞) is closed, convex and
bounded. Obviously Gx ∈ Lm(τ,ς) for all x ∈ Xa0d0

(see (2)), we can see that equation (1) has the representation given below

u(ξ )= u0+u1ξ +
1

Γ(δ )

∫
ξ

0
(ξ −y)δ−1[Eu(y)+F(y,uy,

∫
ξ

0
f (y,s,us)ds)+G(y)x(y)]dy

(2)
ξ ∈ τ the right-ward of the equation takes place. Probability density function ϖn(θ)

will be used which is defined on ]0,∞[ as

ϖn(θ) =
1

nqθ (1+1/n)
ϑn(θ

−1/n)⩾ 0,n ∈ (0,1)

ϑn(θ) =
1
Π

∞

∑
q=1

(−1)q−1(θ)−nq−1 Γ(qn+1)
q!

sin(qΠn). (3)
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Lemma 4. If the formula (2) takes place, then for ξ ∈ τ , n = δ/2

u(ξ ) = §n(ξ )u0 +κn(ξ )u1 +
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)F(y,uy,

∫
ξ

0
f (y,s,us)ds)dy

+
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)G(y)x(y)dy, (4)

where
§n(ξ ) =

∫
∞

0 ϖn(θ)C (ξ nθ)dθ , κn(ξ ) =
∫ ξ

0 §n(s)ds, Mn(ξ ) = n
∫

∞

0 θϖn(θ)§(ξ nθ)dθ .

Proof. For µ > 0. we apply Laplace transforms on (2).

J(µ) =
1
µ

u0 +
1

µ2 u1 +
1

µδ
EJ(µ)+

1
µδ

w(µ)+
1

µδ
z(µ)

here J(µ) =
∫

∞

0 e−µyu(y)dy , w(µ) =
∫

∞

0 e−µy)F(y,uy,
∫ ξ

0 f (y,s,us)ds))dy,
and z(µ) =

∫
∞

0 e−µyG(y)x(y)dy this implies

(µδ I −E)J(µ) = µ
δ−1u0 +µ

δ−2u1 +w(µ)+ z(µ)

Therefore, by virtue of the link among cosine function and resolvent, i.e., for Reµ > 0,

µR(µ2;E)x =
∫

∞

0
e−µξ C (ξ )xdξ , R(µ2;A)x =

∫
∞

0
e−µξ §(ξ )xdξ , x ∈ ς ,

we first have

J(µ) = µ
δ−1(µδ I −E)−1u0 +µ

δ−2(µδ I −E)−1u1

+(µδ I −E)−1w(µ)+(µδ I −E)−1z(µ)

= µ
δ
2 −1

∫
∞

0
e−µ

δ
2 yC (y)u0dy+µ

δ
2 −2

∫
∞

0
e−µ

δ
2 yC (y)u1dy

+
∫

∞

0
e−µ

δ
2 y§(y)w(µ)dy+

∫
∞

0
e−µ

δ
2 y§(y)z(µ)dy
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As n = δ

2 ∈ (1/2,1), so we take

y(µ) = µ
n−1

∫
∞

0
e−µnyC (y)u0dy+µ

−1
µ

n−1
∫

∞

0
e−µnyC (y)u1dy

+
∫

∞

0
e−µny§(y)w(µ)dy+

∫
∞

0
e−µny§(y)z(µ)dy (5)

Suppose probability density function which is one sided in (3) then its Laplace trans-
form is given by ∫

∞

0
e−µθ

ϑn(θ)dθ = e−µn
, n ∈]0,1[ (6)

By using (5) and (6).

µ
n−1

∫
∞

0
e−µnyC (y)u0dy =

∫
∞

0
µ

n−1e−(µξ )n
C (ξ n)nξ

n−1u0dξ

=
∫

∞

0
n(µξ )n−1e−(µξ )n

C (ξ n)u0dξ

=
∫

∞

0

−1
µ

d
dξ

(e−(µξ )n
)C (ξ n)u0dξ

=
∫

∞

0

∫
∞

0

−1
µ

d
dξ

(e−µξ θ
ϑn(θ))C (ξ n)u0dθdξ

=
∫

∞

0
e−µξ

∫
∞

0
ϑn(θ)C (

ξ n

θ n )u0dθdξ

=
∫

∞

0
e−µξ

∫
∞

0

1
nθ (1+1/n)

ϑn(θ
−1/n)C (ξ n

θ)u0dθdξ

=
∫

∞

0
e−µξ

∫
∞

0
ϖn(θ)C (ξ n

θ)u0dθdξ

=
∫

∞

0
e−µξ [§n(ξ )u0]dξ

= L∗[§n(ξ )u0](µ) (7)
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Moreover, as L∗[g∗1(ξ )](µ) = µ−1, by using theorem of Laplace convolution, we have

µ
−1

µ
n−1

∫
∞

0
e−µnyC (y)u1dy=L∗[g∗1(ξ )](mu).L∗[§n(ξ )u1](mu)=L∗[(g∗1∗§n)(ζ )u1](µ)

(8)
Similarly∫

∞

0
e−µny§(y)w(µdy

=
∫

∞

0
e−µξ

[
n
∫

ξ

0

∫
∞

0
ϑn(θ)§(

(ξ − y)n

θ n )F(y,uy,
∫

ξ

0
f (y,s,us)ds))dy

(ξ − y)n−1

θ n dθdy
]

dξ

= L∗
[

n
∫

ξ

0
(ξ − s)n−1

∫
∞

0
ϑn(θ)§(

(ξ − y)n

θ n )F(y,uy,
∫

ξ

0
f (y,s,us)ds))dy

1
θ n dθdy

]
(µ)

= L∗
[∫

ξ

0
(ξ − y)n−1Mn(ξ − y)F(y,uy,

∫
ξ

0
f (y,s,us)ds))dy

]
(µ) (9)

And also similarly

∫
∞

0
e−µny§(y)z(µ)dy = L∗

[∫
ξ

0
(ξ − y)n−1Mn(ξ − y)G(y)x(y)dy

]
(µ) (10)

After combining equations (7), (8), (9)and (10) we get our result i.e. (4). and the proof
is completed. ■

Definition 3. For any x ∈ L̂m(τ,S), if there exist C = C(x) > 0 and u ∈ C(τ,ς) such
that

u(ξ ) = §n(ξ )u0 +κn(ξ )u1 +
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)F(y,uy,

∫
ξ

0
f (y,s,us)ds))dy

+
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)G(y)x(y)dy (11)

The system (1) is mildly solvable with respect to x on [0,τ].

Lemma 5. The operator §n,κn and Mn have the listed characteristics:
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(i) for any fixed ξ ⩾ 0, §n(ξ ),κn(ξ ) and Mn(ξ ) are linear and bounded operators,
i.e for any u ∈ ς .

|§n(ξ )u|⩽ P|u|, |κn(ξ )u|⩽ Pξ |u|, |Mn(ξ )w|⩽
P

Γ(2n)
ξ

n|u|.

(ii) {§n(ξ )}ξ⩾0,{κn(ξ )}ξ⩾0 and {Mn(ξ )}ξ⩾0 are strongly continuous.

(iii) For every ξ > 0, §n(ξ ), κn(ξ ) and Mn(ξ ) are also compact operators if T (ξ ) is
compact.

Proof. Proof can be seen in (36) and (37). ■

Lemma 6. Consider φ(0),φ ′(0)∈ ς , (H1)(iii), (H2)(iii) holds. Also suppose system 1
is mildly solvable with respect to x ∈ Xa0d0 on [−∞,T ], then their exist constant ρ > 0
such that ∥u(ξ )∥⩽ ρ ; for all ξ ∈ τ

Proof. As the system 1 is mildly solvable with respect to x ∈ Xa0d0 on ]−∞,T ], then
by Definition 3.1, we can suppose u is mildly solvable of the system 1 with respect to
x on [−∞,T ], then u satisfies 11. Let u(ξ ) = s(ζ )+ φ̃(ξ ) where φ̃ :]−∞,T ]→ ς be a
function given by

φ̃(ξ ) =


φ(ξ ),−∞ < ξ ⩽ 0,
φ ′(ξ ),−∞ < ξ ⩽ 0,
§n(ξ )φ(0),ξ ∈ τ.

(12)

surely, u satisfies 11 iff
s0 = 0,−∞ < t ⩽ 0,
s(ξ ) = §n(ξ )s0 +κn(ξ )s1 +

∫ ζ

0 (ξ − y)n−1Mn(ξ − y)F(y,sy + φ̃y,∫ ξ

0 f (y,J,sJ + φ̃J)dJ))dy+
∫ ζ

0 (ξ − y)n−1Mn(ξ − y)G(y)x(y)dy,ξ ∈ τ.

(13)
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For t ∈ τ gives the result

∥s(ξ )∥⩽ ∥§n(ξ )s0∥+∥κn(ξ )s1∥+
∫

ξ

0
(ζ − y)n−1∥Mn(ξ − y)F(y,sy + φ̃y,∫

ξ

0
f (y,J,sJ + φ̃J)dJ)∥dy+

∫
ξ

0
(ξ − y)n−1||Mn(ξ − y)G(y)x(y)∥dy

⩽ ∥§n(ξ )s0∥+∥κn(ξ )s1∥+
nP

Γ(1+n)

∫
ξ

0
(ξ − y)n−1āF(1+∥sy + φ̃y∥A

+Pf T (1+∥sJ + φ̃ξ∥A ))dy+
nP∥G∥∞

Γ(1+n)

∫
ζ

0
(ξ − y)n−1∥x(y)∥sdy.

⩽ P∥s0∥+P∗∥s1∥+
nP

Γ(1+n)

∫
ξ

0
(ζ − y)n−1āF(1+∥sy + φ̃y∥A +Pf T

(1+∥sJ + φ̃ξ∥A ))dy+
nP∥G∥∞

Γ(1+n)

∫
ξ

0
(ξ − y)n−1∥x(y)∥sdy

⩽ ā+
(āF)nP(1+Pf T )

Γ(1+n)

∫
ξ

0
(ξ − y)n−1||sy + φ̃y||A dy (14)

where

ā = P∥s0∥+P∗∥s1∥+
(āF)P(1+Pf T )T N

Γ(1+n)
+

nP∥G∥∞

Γ(1+n)

( m−1
mn−1

)m−1
m T n− 1

m ∥x∥L m(τ,S)

Suppose K∗
T = max{K∗(ξ ) : ξ ∈ τ} and PT = max{P̄(ξ ) : ξ ∈ τ}. Then

∥sy + φ̃y∥A ⩽ ∥sy∥A +∥φ̃y∥A

⩽ K∗(ξ )sup{∥s(y)∥ : 0 ⩽ y ⩽ ξ}+P(ξ )∥s0∥A +K∗(ζ )sup{∥φ̃y∥ : 0 ⩽ y ⩽ ξ}
+P(ξ )∥φ̃0∥A ⩽ K∗

T sup{∥s(y)∥ : 0 ⩽ y ⩽ ξ}+K∗
T P∥φ(0)∥+PT∥φ0∥A

Set
z(ξ ) = K∗

T sup{∥s(y)∥ : 0 ⩽ y ⩽ ξ}+K∗
T P∥φ(0)∥+PT∥φ0∥A

then
∥sy + φ̃y∥A ⩽ z(ξ )
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which implies that 14 can be written as

∥s(ξ )∥⩽ ā+
(āF)nP(1+Pf T )

Γ(1+n)

∫
ξ

0
(ξ − y)n−1z(y)dy (15)

Note that from 15 and definition of z, we have

z(ξ )⩽ K∗
T P∥phi(0)∥+PT∥φ∥A +K∗

T ā+
K∗

T āF nP(1+Pf T )
Γ(1+n)

∫
ξ

0
(ξ − y)n−1z(y)dy

By using lemma 5, there exists constant P̂ > 0 in such a way

z(ξ )⩽ P̂(K∗
T P∥phi(0)∥+PT∥φ∥A +K∗

T ā) := P̃, t ∈ τ

Then we have

∥s(ξ )∥⩽ ā+
(āF)nP(1+Pf T )

Γ(1+n)

∫
ξ

0
(ξ − y)n−1P̃)dy

which satisfies that

∥s(ξ )∥⩽ ā+
(āF)P(1+Pf )T n

Γ(1+n)
P̃ := P∗

As a result, for ξ ∈ τ ,

∥u(ξ )∥⩽ ∥s(ξ )∥+∥§n(ξ )φ(0)∥⩽ P∗+P∥φ(0)∥ := ρ

This completes the proof. ■

Theorem 1. Let (H1), (H2), (H3) and (H4) are satisfied, φ(0),φ ′(0) ∈ ς . Then for
each x ∈ Xa0d0 and for some m such that mn > 1, system 1 has a solution [−∞,0]
according to x and the mild solution is unique.

Proof. Let A C|T1 = {u : [−∞,0]→ ς ,u[−∞,0] ∈ A and u|[0,T1] ∈C([0,T1],ς)} and

B(1,T1) =
{

u ∈ A C|T1maxy∈[0,T1]∥h(y)−u0 − yu1∥⩽ 1 for ∞ < y ⩽ 0
}
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Then B(1,T1)A C|T1 is closed convex subset of A C|T1 . By using (H1)(i) and (H1)(ii),
it is not difficult to see that F(t,ht ,

∫ Y
0 f (y,s,us)ds) is a measurable function on [0,T1].

Let h∈B(1,T1), there exists a fixed ρ∗= {|u(0)|+1+ |u|A }> 0 such that |h|A C|T1
⩽

ρ∗ using (H1)(iii) and (H2)(iii), for t ∈ [0,T1].

|F(y,hy,
∫ Y

0
f (y,s,hs)ds)| ⩽ a0(1+ |hy|A +P− f T (1+ |x|A ))

⩽ a0
F(1+ρ

∗+Pf T (1+ρ
∗)) = KF

By Lemma 5(i), Holder inequality and (H1)(iii) and (H2)(iii), we obtain

∫
ξ

0
(ξ − y)n−1|Mn(ξ − y)F(y,hy,

∫ Y

0
f (y,s,hs)ds)|dy ⩽

PKF

Γ(1+2n)
T1

2n

Thus, |(ξ − y)n−1Mn(ξ − y)F(y,hy,
∫ Y

0 f (y,s,hs)ds)|dy is Lebesgue integrable with re-
spect to y ∈ [0,ξ ] for all ξ ∈ [0,T1] by “Bochner’s theorem. Otherwise, in view of
Lemma 5(ii) and Holder inequality.

∫
ξ

0
(ξ − y)n−1|Mn(ξ − y)G(y)x(y)|dy

⩽
∥G∥∞

P
Γ(2n)

∫
ξ

0
(ξ − y)2n−1|x(y)|dy

⩽
∥G∥∞P
Γ(2n)

(∫
ξ

0
(ζ − y)

m
m−1 (2n−1)dy

)m−1
m
(∫

ξ

0
|x(y)|mNdy

) 1
m

⩽
||G||∞P
Γ(2n)

(
m−1

2mn−1

)m−1
m

T 2n− 1
m ||x||L̂M(τ,S)

Thus (ξ −y)n−1Mn(ξ −y)G(y)x(y) is Bochner integrable with respect to y ∈ [0,ξ ] for
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all ξ ∈ [0,T1]. We can define M : B(1,T1)→ A C|T1 as follows:

(M h)(ζ ) = §n(ξ )u0 +κn(ξ )u1 +
∫

ξ

0
(ξ − y)2n−1Mn(ξ − y)F(y,hy,

∫ Y

0
f (y,s,hs)ds)dy

+
∫

ξ

0
(ξ − y)2n−1Mn(ξ − y)G(y)x(y)dy,0 < ξ ⩽ T1

By the properties of §n, κn, Mn and (H1),(H2) one can verify that M is a contraction
map on B(1,T1) which chosen T1 > 0. For ξ ∈ [0,T1], it is not difficult to get the
following inequality:

|(M h)(ξ )−u0 −ξ u1|⩽ |§n(ξ )u0 −u0|+ |κn(ξ )u1 −ξ u1|

+
∫

ξ

0
(ξ − y)n−1|Mn(ξ − y)F(y,hy,

∫ y

0
f (y,s,hs)ds)|dy

+
∫

ζ

0
(ξ − y)n−1|Mn(ξ − y)G(y)x(y)|dy

⩽ |§n(ξ )u0 −u0|+ |κn(ξ )u1 −ξ u1|+
PKF

Γ(1+2n)
ξ

2n +
∥G∥∞P
Γ(2n)

∥x∥L̂M(τ,S)ζ
2n− 1

m

(16)

Since {§n(ξ )}ξ⩾0 and {κn(ξ )}ξ⩾0 are strongly continuous operators in ς , one can
select T1 so small, υ = 1

3 such that

|§n(ξ )u0 −u0|⩽
1
3

and|κn(ξ )u1 −ξ u1|⩽
1
3

(17)

Let

T11 = min

1
3
,

(
Γ(1+2n)

3P(KF T
1
m

1 +2n∥G∥∞∥x∥L̂Mτ
)

m−1
m

)
Then for all t ∈ T11, we obtain from (16) and (17) that

|(M h)(ξ )−u0 −ξ u1|⩽ 1
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Hence
B(B(1,T1))⊆ B(1,T1)

Let h1,h2 ∈ B(1,T1) and ∥h1∥0,T1 ,∥h2∥0,T1 ⩽ ρ∗.
For t ∈ [0,τ11], using Lemma 5(ii),(H1)(iii) and (H2)(iii).

|(M h1)(ξ )− (M h2)(ξ )|

⩽
∫

ξ

0
(ξ − y)n−1|Mn(ξ − y)(F(y,h1y,

∫ y

0
f (y,s,h1s)ds)−F(y,h2y),

∫ y

0
f (y,s,hs)ds)|dy

⩽
PL̂F(ρ

∗)

Γ(2n)

∫
ξ

0
(ξ − y)2n−1(∥h1y −h2y∥+

∫
ξ

0
L̂H(ρ

∗)(∥h1s −h2s∥)dsdy

which implies that

|(M h1)(ξ )− (M h2)(ξ )|⩽
PL̂F(ρ

∗)(1+ L̂H(ρ
∗)T )

Γ(1+2n)
ξ

2n∥h1 −h2∥0,T1

Thus

∥M h1 −M h2∥o,T1 ⩽
PL̂F(ρ

∗)(1+ L̂H(ρ
∗))

Γ(1+2n)T
T 2n

1 ∥h1 −h2∥0,T1

Let T12 =
1
2 (

Γ(1+2n)
PL̂F (ρ∗)(1+L̂H (ρ∗)T )

)T 2n
1 ;T1 = min{T11,T12},

Then M is a contraction map on B(1,T1). It follows from the contraction mapping
principle that M has a unique fixed point h ∈ B(1,T1), and h is the unique mild
solution of system (1) with respect to x on [0,T1]. ■

Remark 1. Assume that ς and S are two separable reflexive Banach spaces. If we
replace (H1)(i)-(ii) by the condition that F : τ × ς → ς is Holder continuous with
respect to t and for any ρ > 0, there is constant L̂F(ρ)> 0 in such a way

|F(ξ ,ϖ1)−F(y,ϖ2)|⩽ L̂F(ρ)(|ξ − y|γ + |ϖ1 −ϖ2|)
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where γ ∈ (0,1], provided that |ϖ1|, |ϖ2|⩽ ρ , condition (H2) by the condition

F ∈ L̂∗(L̂p(τ,S), L̂p(τ,ς)),

and the condition (H3) by the condition

Ma0d0 = L̂m(τ,S)

one can use the some approach to derive the existence of mild solutions.

4. Continuous Dependence

In this subsection, we show that the mild solution of system (1) is continuous
dependence on the initial value in sense control term.

Theorem 2. Let u1(0), u2(0) ∈ Π where Π is bounded set. Let
u1(ξ ,u1

0,u
1
1,x) = §n(ξ )u1

0 +κn(ξ )u1
1 +

∫ ξ

0 (ξ − y)n−1Mn(ξ − y)
F(y,u1

y ,
∫ y

0 f (y,s,u1
s )ds)dy+

∫
Ξ

0 (ξ − y)n−1Mn(ξ − y)G(y)x(y)dy, 0 ⩽ ξ ⩽ T
u1(ξ ) = φ 1(ξ ), −∞ ⩽ ξ ⩽ 0.

and 
u2(ξ ,u2

0,u
2
0,w) = §n(ξ )u2

0 +κn(ξ )u2
1 +

∫ ξ

0 (ξ − y)n−1Mn(ξ − y)F(y,u2
y ,∫ y

0 f (y,s,u2
s )ds)dy+

∫ ξ

0 (ξ − y)n−1Mn(ξ − y)G(y)w(y)dy, 0 ⩽ ξ ⩽ T
u2(ξ ) = φ 2(ξ ), −∞ ⩽ ξ ⩽ 0.

Then there exists a constant C ∗ > 0 such that{
|u1(ζ ,u1

0,u
1
1,x)−u2(ξ ,u2

0,u
2
0,w)|⩽ C ∗(|u1

0 −u2
0|+∥u1

1 −u2
1∥+ ||x−w||L̂mτ

) ξ ∈ τ

|u1(ξ )−u2(ξ )|= |φ 1(ξ )−φ 2(ξ )|, ∞ ⩽ ξ ⩽

where C ∗ = max
{

P∗P,P∗,P P||G||∞
Γ(2n) T 2n− 1

m

}
> 0

Proof. Since u1
0,u

2
0 ∈ Π. Π is set which is bounded in ς , applying lemma 6, positive
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constant ρ exists there in such a way ∥u1
s∥]−∞,0],∥u2

s∥]−∞,0], |u1|, |u2|⩽ ρ For ξ ∈ τ ,
by using Holder inequality, lemma 5, (H1)(ii),(H2)(ii).

|u1(ξ ,u1
0,u

1
1,x)−u2(ξ ,u2

0,u
2
1,w)|⩽ |§n(ξ )(u1

0 −u2
0)|+ |κn(ξ )(u1

1 −u2
1)|

+
∫

ξ

0
(ξ − y)n−1|Mn(ξ − y)(F(y,u1

y ,
∫ y

0
f (y,s,u1

s )ds)−F(y,u2
y ,
∫ y

0
f (y,s,u2

s )ds))|dy

+
∫

ξ

0
(ξ − y)n−1|Mn(ξ − y)(G(y)x(s)−G(y)w(y))|dy

⩽ P|u1
0 −u2

0|+P∗|u1
1 −u2

1|+
L̂F(ρ)P
Γ(2n)

∫
ξ

0
(ξ − y)2n−1(|u1

y −u2
y |

+
∫ y

0
L̂H(ρ

∗)|u1
s −u2

s |ds
)
dy+

||G||∞P
Γ(2n)

∫
ξ

0
(ξ − y)2n−1|x(y)−w(y)|Sdy

⩽ P|u1
0 −u2

0|+P∗|u1
1 −u2

1|+
||G||∞
Γ(2n)

ξ
2n− 1

2m
(∫ ξ

0
|w(y)− x(y)|MS

) 1
m

+
L̂F(ρ)(1+ L̂H(ρ)T )P

Γ(2n)

∫
ξ

0
(ξ − y)2n−1||u1

y −u2
y ||L̂m(τ,S)dy

⩽ P|u1
0 −u2

0|+P∗|u1
1 −u2

1|+
||G||∞P
Γ(2n)

T 2n− 1
m ∥w− x∥L̂m(τ,S)

+
L̂F(ρ)(1+ L̂H(ρ)T )P

Γ(2n)

∫
ξ

0
(ξ − y)2n−1||u1

y −u2
y ||L̂m(τ,S)dy

using Lemma 1 again, we obtain

|u1(ξ ,u1
0,u

1
1,x)−u2(ξ ,u2

0,u
2
1,x)|⩽ C ∗(|u1

0 −u2
0|+∥u1

1 −u2
1∥A +∥w− x∥L̂m(τ,S))

for t ∈ τ . Note that

|u1(ξ )−u2(ξ )|⩽ |φ 1(ξ )−φ
2(ξ )|, f or − r ⩽ t ⩽ 0.

This concludes the evidence. ■
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5. Optimal Control

Optimal pair’s existence for fractional control system (1) are studied in this sec-
tion. Initially, the Lagrange problem is being consider:

(M) find control x◦ ∈ Xa0d0 such that

J (x◦)⩽ J (x) f orall x ∈ Xa0d0

where

J (x) =
∫ T

0
L ∗(ξ ,ux

ξ
,ux(ξ ),x(ξ ))dξ .

ux denote system’s (1) mild solution corresponding to control x ∈ Xa0d0 .
For solution’s existence for problem (M), consider some assumptions:

(H5) (i) Functional L ∗ : τ ×A × ς ×S → R ∪{∞} is Borel measurable;

(ii) L ∗(ξ ,u,s,·) is convex on S for each u ∈ A , and for every ξ ∈ τ;

(iii) There exist constant, d,e ⩾ 0, ĵ > 0, ψ is positive and ψ ∈ L̂1(τ,R) such
that

L ∗(ξ ,u,s,x)⩾ ψ(ξ )+d||u||A + e||s||+ ĵ||x||ms .

Theorem 3. In (H4) and Theorem 1 under the suppositions, let G is operator which is
strongly continuous . Optimal control problem (M) holds one optimal pair, i.e, control
x◦ ∈ Xa0d0 exists there in such a way.

J (x◦) =
∫ T

0
L ∗(ξ ,u◦ξ ξ ,u◦(ξ )ξ ,x◦(ξ ))dξ ⩽ J (x) for x ∈ Xa0d0

Proof. If nothing is to be proven in in f {J (x◦) : x ∈ Xa0d0}=+∞. Suppose

in f {J (x) : x ∈ Xa0d0}= υ <+∞

Using the suppositions (H4), we have υ >−∞.

{(up,xp)}⊂Ea0d0 := {(u,x);u is system’s (1) mild solution corresponding to x ∈ Xa0d0} .
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in such a way J (up,xp)→ υ as p →+∞. As {xp} ⊆ Xa0d0 , p = 1,2,...,{xp} is subset
of the separable reflexive Banach space L̂m(τ,S) which is bounded, a subsequence (we
denote it by {xp}) exists there and x◦ ∈ L̂m(τ,S) such that

xp → x◦inL̂m(τ,S).

Since Xa0d0 is closed and convex, which leads to Marzur Lemma x◦ ∈ Xa0d0.
Assume that up ∈ A C denote solution’s corresponding sequence of the integral

equation.

up(ξ ) = §n(ξ )u0 +κn(ξ )u1 +
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)F(y,up

y ,
∫ y

0
f (y,s,up

(
s))ds)dy

+
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)G(y)xp(y)dy,ξ ∈ τ

In view of Lemma 1 and 6, it can be verified that there is ρ > 0 in such a way

||up||A C ⩽ ρ, where p = 0,1,2,...

here u◦ represent solution according to x◦,

u◦(ξ ) = §n(ξ )u0 +κn(ξ )u1 +
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)F(y,u0

y ,
∫ y

0
f (y,s,u0

s )ds)dy

+
∫

ξ

0
(ξ − y)n−1Mn(ξ − y)G(y)x◦(y)dy, ξ ∈ τ

Hence, for ξ ∈ τ by condition (H1)(ii), Lemma 5(i) and Holder inequality, we have
the following inequality:

|up(ξ )−u◦(ξ )|⩽
∫

ξ

0
|(ξ − y)n−1Mn(ξ − y)[F(y,up

y ,
∫ y

0
f (y,s,up

s )−

F(y,u0
y ,
∫ y

0
f (y,s,u0

s )ds)]dy+
∫

ξ

0
(ξ − y)n−1|Mn(ξ − y)|xp(y)G(y)− x◦(y)G(y))|dy
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⩽
L̂F(ρ)P
Γ(2n)

∫
ξ

0
(ξ − y)2n−1(|u1

y −u0
y |+

∫
0yL̂H(ρ)|u1

s −u0
s |ds

)
|dy

+
P

Γ(2n)

∫
ζ

0
(ξ − y)2n−1|xp(y)G(y)− x◦(y)G(y)|dy

⩽
L̂F(ρ)(1+ L̂H(ρ))P

Γ(2n)

∫
ξ

0
(ξ − y)2n−1||up

y −u◦y ||dy

+
P

Γ(2n)
T 2n− 1

m
(∫ T

0
|G(y)xp(y)−G(y)x◦(y)|Mdy)

1
m

= η
(1)
p +η

(2)
p

Since G is strongly continuous, ∥Gxp −Gx◦∥ → 0 as p → ∞, by applying Lemma 3
we have ∫ T

0

∣∣G(y)xp(y)−G(y)x◦(y)
∣∣mdy → 0, as p → ∞,

which implies that η
(2)
p → 0 as p → ∞. Moreover, we have

∣∣up
ζ
−u◦

ξ

∣∣⩽ |η(2)
p |+ LF(ρ)(1+ L̂H(ρ)T )P|

Γ(2n)

∫
ξ

0
(ξ − y)2n−1∣∣up

y −u◦y
∣∣dy.

By virtue of Gronwall inequality again, there exists a P∗ > 0 such that∣∣up
ξ
−u◦

ξ

∣∣⩽ P∗|η(2)
p |,

which yields that
up → u◦ in A C as p → ∞.

Balder assumption is provided by assumption (H5) . It can be concluded by using
Balder’s theorem.

(u,x)→
∫ T

0
L ∗(ξ ,uξ ,wξ ,x(ξ ))dξ

in the weak topology of Lm(τ,S) ⊂ L1(τ,S) is lower semi-continuous, and the strong
topology of L1(τ,ς). τ is weakly lower semi-continuous on Lm(τ,S), by using (H5)(iv)
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τ >−∞, τ attains its infimum at x◦ ∈ Xa◦d◦ , i.e,

υ = lim
p→∞

∫ T

0
L ∗(ξ ,up

ξ
,up(ξ ),xp(ξ ))dξ

⩾
∫ T

0
L ∗(ξ ,u◦

ξ
,u◦(ξ ),x◦(ξ ))dξ

= J (x◦)

⩾ υ .

The proof is completed. ■

Finally, we present an example To illustrate the main results, finally some examples
are presented.

Example 1. Suppose the problem:

c
0Dδ

ξ
u(ξ ,v)− ∂ 2

∂v2 u(ξ ,v) = M(ξ ,
∫

ξ

−∞

M1(s−ξ )u(s,v)ds,
∫

ξ

0
M2(s,v,ρ,ρ − s)

u(ρ,v)dρds)+
∫
[0,1]

Ψ(v,s)x(s,ξ )ds,q ∈ (
6
5
,1) ζ ∈ τ

u(ξ ,0) = u(ξ ,1) = 0,ξ > 0

u(ξ ,v) = phi(ξ ,v), u′(ξ ,v) = φ
′(ξ ,v),−∞ ⩽ t ⩽ 0,v ∈ [0,1].

(18)
here φ is continuous and satisfies some conditions,u ∈ L2(τ × [0,1]),and Ψ : [0,1]×
[0,1]→ R is continuous. Furthermore, we make some hypothesis:

(h1) In ]−∞,0], M1(s) is continuous and
∫ 0
−∞

M2
1(s)ds < ∞.

(h2) In τ × [0,1], M is continuous and there exists a positive constant µ such that

|M(ζ ,y1θ1)−M(ξ ,y2,θ2)|⩽ µ(γ|y1 − y2|+ |θ1 −θ2|).for all ξ ∈ τ

where γ =
(−1

2ω

∫ 0
−∞

M2
1(s)ds

)−1
2 .
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(h2’) M is continuous on τ × [0,1]× [0,1] and there exist a constant ν > 0 such that

|M(ξ ,y,θ)|⩽ ν(γ|y|+ |w|), for all t ∈ τ

(h3) M2(ξ ,v,s)⩾ 0 is continuous in τ× [0,1]×]−∞,0] and
∫ 0
−∞

M2(ξ ,v,s)=ψ(ξ ,v)<
∞ and ν = maxψ(ξ ,v) : ξ ∈ τ,v ∈ [0,1].

Let ς = S = L2(0,1) equipped with the usual norm ∥ · ∥2
L,and D(E) = Θ2,2(0,1)∩

Θ
1,2
0 (0,1), and Eu = − ∂ 2u

∂v2 for u ∈ D(E). Then E can create a strong continuous
cosine family C (t)t⩾0 in ς . Function of controls are x : C (u[0,1]) → R), such that
x ∈ L2(C (u[0,1])). This claim is that ξ → x(·,ξ ) going from τ into S is measurable.
Let X(ξ )= x ∈ S : ∥x∥S ⩽ ϕ , where ϕ ∈ L2(τ,R+). we set the admissible control Xaodo

to all x ∈ L2(C (u[0,1])) such that ∥x(·,ξ )∥L2C (u[0,1]) ⩽ ϕ(t), a.e.
Suppose ω ⩽ 0, define the phase space

A =
{

ϖ ∈C(]−∞,0],ς) : limy→−∞eωy
ϖ(y) exists inς

}
and also suppose that

∥ϖ∥A = sup−∞<y⩽0{e−ωy∥ϖ(y)∥}

Then (A ,∥ · ∥A ) is a Banach space which satisfies (H1)-(H3) with K = 1,H(ζ ) =

max{1,eωξ},P̄(ξ ) = e−ωξ

For (ξ ,ϖ) ∈ [0,1]×A , where ϖ(y)(s) = φ(y,s),(y,s) ∈]−∞,0]× [0,1], let

u(ξ )(s) = u(ξ ,s),

f (ξ ,ϖ)(s) =
∫ 0

−∞

M2(ξ ,s,y)ϖ(y)(s)dy,

F
(
ξ ,ϖ ,

∫
ξ

0
f (y,ϖ)dy

)
(s) = M

(
ξ ,

∫ 0

−∞

M1(y)ϖ(y)(s)dy,
∫

ξ

0
f (y,ϖ)(s)dy

)
,

G(ξ )x(ζ )(s) =
∫
[0,1]

Ψ(s,y)x(y,ξ )dy,
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Then the system (1) can be abstracted as the problem (18).
Consider cost function:

M (x) =
∫ T

0
J (ζ ,ux

ξ
,ux(ξ ),x(ξ ))dξ ,

where
J : τ ×C1,0(]−∞,0]× [0,1]×L2(τ × [0,1]))→ R∪+∞

for u ∈C1,0(]−∞,T ]× [0,1]) and x ∈ L2([0,1]× τ),

J (ξ ,ux
ξ
,ux(ξ ),x(ξ ))(s) =

∫
[0,1]

∫ 0

−∞

|ux(ξ + y,s)|2dyds+
∫
[0,1]

|ux(ξ ,s)|2ds

+
∫
[0,1]

|x(s,ξ )|2ds.

It can be easily verified that all assumptions in Theorem 3 are satisfied. These results
can be applied to problem (18).
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