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 Abstract   

This paper presents research that examines the influence of several parameters, such as MHD, 

Soret and Dufour effects, buoyancy, and second-order thermal slip, on the flow of Carreau-

Yasuda fluid. The underlying boundary layer equations were converted into ordinary 

differential equations for the investigation, which were then numerically solved for general 

circumstances using the shooting technique. The results were drawn and thoroughly examined 

for a variety of parameters, including Brownian parameter, thermophoresis parameter, and 

magnetic parameter. The findings included velocity, temperature, and concentration patterns 

within the boundary layer. 

Nomenclature 

𝑇∞ denotes the ambient fluid temperature 

𝜈  known as kinematic velocity 

𝜌 = density 

ν = velocity 

d = diameter 

µ = viscosity 

𝐶𝑝  stand for the constant-pressure specific heat capacity 

ΔT indicate the temperature difference  

𝐶𝑤 represent the wall concentration 

http://scienceimpactpub.com/journals/index.php/jess/
http://www.scienceimpactpub.com/IJAM
mailto:samramalik83@gmail.com
mailto:kiransaleem444@gmail.com


International Journal of Advancements in Mathematics 1 (1) 2021. 47-63 

 

48 
 

𝐶∞ known as the ambient fluid concentration 

𝐶𝑠 is the susceptibility of the concentration 

Introduction 

Non-Newtonian fluids are liquids whose viscosity changes with respect to velocity flow. Non-

Newtonian fluids do not follow Newton’s viscosity law. There are many fluids in the 

atmosphere that do not follow the law of viscosity and therefore show their linear relationship 

between deformation and pressure. Because the change in viscosity occurs with temperature. 

Just few fluids show such type of steady consistency. 

Casson and Carreau-Yasuda non-Newtonian blood viscosity models are basically used to 

check and analyzed the behavior of two-dimensional Newtonian and non-Newtonian flows for 

steady and oscillatory flow in straight and curved pipe. In general, this peristaltic phenomenon 

is very important in medical or biological field. It is most common in the urinary tract, small 

blood vessels and other glandular ducts in living organism. The importance of peristaltic 

approach in industry is very clear. We also use this practice in the nuclear industry to obtain 

toxic fluids. In the past, the peristaltic flow has been extensively tested in direct ways. So in 

such research biological fluid like blood is considered as viscous fluid. Subsequently attempts 

were made for peristaltic movement of viscoelastic fluid structures. Viscoelastic fluids cannot 

be properly described in relation. That’s why their skeletal structures are described in a variety 

of non-Newtonian fluids. But in this kind of fluid, problems arise with their dominant balance 

of high morality and non-linear behavior. So in solving this problem we will use long 

wavelength approximation in mathematical modeling. From a variety of non-Newtonian fluids, 

the Carreau-Yasuda model is more profitable than the so-called power law model. With the 

help of this model we can estimate the reduction and effect of the cut with great accuracy.  

Here, in this paper we analyze the flow of non-Newtonian objects in relation to the effects of 

Soret and Dufour over a porous surface. There are also the consequences for mixed convection 

and dissipation. So with this, we first solved non-linear OEEs numerically via shooting 

method. 

 The boundary value problem can be solved using the shooting technique by breaking it down 

into a series of initial value problems. It describes how the resolution of border value issues 

and initial value problems relate to one another. In the study of differential equation solutions, 

it is significant from both an academic and practical standpoint.  In reality, using this technique, 

we fire our trajectories in a variety of directions until we discover one with the required 

boundary value. 

Basically, we used just one parameter to find out our missing initial condition. The conditions 

of boundaries which are not initial, we treat them as a constraints to measure the appropriate 

values for the parameters. After that we give an initial guess for the parameters to find out the 

solutions which satisfied the boundary conditions. As we know that every single thing in the 

universe have advantages as well as disadvantages. Likewise, the shooting method has certain 

drawbacks or limitations that become evident when the differential equations are unstable, 

causing them to "blow up" before the initial value problem can be fully integrated. Even highly 

accurate initial value estimates may fail to prevent this error from occurring. In certain 
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scenarios, there may exist multiple valid solutions to the boundary value problem, meaning 

that solving it as an IVP can produce one solution or the other for only a small change in the 

leftmost boundary condition. 

Here in this paper we will use the Shooting method for our non-linear ODEs to solve them 

numerically. By appling this method when we get solutions compare them with the boundary 

conditions. After that we need to check the error. We must change the initial approximation of 

the syetem and repeat it until the unchanged solution conforms to the conditions of the criteria   
     

Newtonians fluid refers to any fluid that complies with Newton's viscous rule. In Newton's law 

of viscosity, represents the fluid's dynamic viscosity and  the shear tension. Numerous fluids 

exist that do not adhere to Newton's rule of viscosity; these types of fluids are referred to as 

non-Newtonian fluids. Because the stress-strain relationship is not followed by all fluids in the 

universe.  

Because of the non-linear connection between deformation rate and tension, most industrial 

fluids are non-Newtonian in character. These fluids include pulps, blood, molton polymers, 

and others. 

Due to their numerous commercial, biological, and mechanical uses, non-Newtonian fluids 

have garnered considerable study interest. The connection between shear stress and shear rate 

for these fluids is nonlinear. The fluid paradigm proposed by Carreau-Yasuda is one such 

example. Researchers have looked into the flow of Carreau-Yasuda liquid under a variety of 

flow conditions, including slip effects, curvilinear channels, Hall and Ohmic heating, mixed 

convection, chemical processes, and radiative flux (Hayat et al., works [11–13]). Peralta et al. 

[14] examined the Carreau-Yasuda nanofluid flow over a limited vertical sheet in different 

research. Lee [15] used the weighted least squares method based on finite element analysis to 

investigate the rheological behavior of the Carreau-Yasuda liquid.  

The study of heat transmission has received a lot of interest recently as a result of its 

numerous uses in the chemical industry, automobiles, microelectronics, and other fields. The 

abundance of uses for heat transmission in electricity and heating/cooling systems has 

increased interest among researchers in the field. Choi and Eastman developed a method to 

accelerate heat transfer by adding nanoparticles to the conventional heat transfer fluids to 

address the issue of heat transmission. The thermophysical characteristics of a working fluid 

were examined using nanoparticles with a diameter of 5100nm in the working fluid. We 

already know that a liquid's heat conductivity depends on the diameter, volume percentage, 

and bulk of the nanoparticles.  

Ahmed et al. [16] Farooq et al. [17] investigated how nanofluids have grown to be very 

common among modern medical experts, scientists, electronics engineers, mathematicians, 

and engineers working in the mechanical and material science departments. In general, 

nanofluids with nm-sized particles have greater stability, higher efficiency, and numerous 

rheological characteristics. The ambition was sparked by nanoparticles' exceptional 
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mechanical, thermal, optical, and electronic properties. In a porous material over a plane 

surface, Khan et al. [18] studied magneto hydrodynamic convection heat transfer flow.  

Because magneto-hydrodynamics flow has numerous commercial and engineering uses, it is 

of paramount significance to study it. By altering the boundary layer structure, the flow field 

can be directed in a desired direction according to the magneto-hydrodynamics concept. This 

makes changing the flow dynamics using MHD extremely simple and reliable. MHD has also 

attracted a lot of interest from physiologists in biology and medicine due to its promise to treat 

a number of pathological diseases. In their study of boundary layer MHD flow over a nonlinear 

stretching sheet, Desale et al. [19] came to the conclusion that the magnetic field has a stronger 

impact on lowering the velocity distribution than the nonlinear expanding parameterHayat et 

al. [20] investigated the MHD peristaltic flow of nanofluid in a conduit with slip, wall 

properties, and Joule heating and discovered that both nanoparticle concentration and 

temperature are rising functions of thermophoresis and Brownian motion parameters. Akbar et 

al. [21] studied the numerical solution of MHD Eyring-Powell fluid over an expanding sheet. 

Mabood et al. [22] investigated the impacts of MHD and viscous loss on a nonlinear stretching 

sheet. Mahanthesh et al. [23] addressed the findings for both nonlinear and linear sheet-

stretching cases. 

Due to the Carreau-Yasuda fluid model's capacity to forecast both Newtonian and non-

Newtonian behavior, it has been the subject of significant study. On this fluid model, 

researchers including Hayat et al. [24–26] have carried out a number of experiments. In one 

research, they looked at the peristaltic flow of Carreau-Yasuda fluid in a curved tube with slip 

effects and concluded that as the velocity slip parameter is increased, the amount of retrograde 

pumping and the peristaltic areas drop. In another research, they investigated the peristaltic 

flow of a viscous, Carreau, and Carreau-Yasuda fluid with Hall and Ohmic heating effects in 

an uneven channel. A wide wavelength and small Reynolds number estimate were used to 

study the mixed convective peristaltic movement of the Carreau-Yasuda fluid with chemical 

reactivity and thermal dissipation. A numerical analysis of the MHD peristaltic transit of 

Carreau-Yasuda fluid in a curved conduit with Hall effects was also performed by Abbasi et 

al. [27]. 

Due to its many uses in areas like engineering, geo-fluid dynamics, and biomechanics, the 

study of fluid movement through porous surfaces is an extensively studied subject. These fluid 

movement patterns are also seen and studied in physiological systems found in the human 

body, including the kidneys, lungs, tiny blood vessels, cartilage, and bones. The movement of 

blood and nutrition through the body's tissues can be viewed as a deformable porous medium 

necessary for their correct operation. In order to better understand different illnesses like the 

development of tumors, researchers have created models to investigate the movement of 

Newtonian or non-Newtonian fluids through porous surfaces. 

Many commercial and environmental processes, particularly those involving cooling and 

evaporation, depend on the movement of mass and heat. The ability of fluids to transmit heat 

is essential for comprehending energy processes. It is known as Soret or thermo-diffusion when 

a temperature gradient results in a mass flow, and Dufour or diffusion-thermo when a 

concentration gradient results in an energy flux. When examining how heat and mass are 

transferred, Soret and Dufour effects must be considered concurrently. Additionally, these 
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impacts are investigated when a heat source or drain is present. References [28-40] contain 

previous research on Soret and Dufour effects and heat source/sink for different shapes. The 

goal of the present research is to better understand the coupled heat and mass flux phenomenon 

with heat source/sink effects that has biological uses. 

Chemical engineering and geology both benefit greatly from the Soret effect, which is the 

diffusion flux brought on by a temperature gradient, and the Dufour effect, which is the heat 

flux brought on by a chemical potential gradient. Diffusion-thermo effect is essential in 

mixtures of gases with light and medium molecular weights, and has been used, for instance, 

to separate isotopes. Coupled heat and mass transmission has many uses in engineering, 

including the diffusion of medication in blood vessels, the movement of moisture through 

insulations, and the spread of chemical contaminants. Blood appears to act like a Casson fluid, 

according to studies [42,43].  

Although the effects of Fourier's or Fick's laws are generally regarded to be more significant, 

diffusion-thermo and thermal-diffusion's effects are sometimes unavoidable. For example, the 

thermal diffusion phenomenon is utilized in the separation of isotopes as well as in gas mixes 

with high and middle molecular weights (such as H2 and He) and air and N2, respectively. The 

purpose of this discussion is to investigate the peristaltic flows of MHD non-Newtonian fluid 

in a revolving frame while keeping these viewpoints in mind.. 

A deformable canal with porous sides is a tube that can expand and compress. Uchida and 

Aoki previously investigated the flow inside a semi-infinite tunnel with contracting/expanding 

pipelines and impermeable sides. They used an approximate solution to limit the Navier-Stokes 

equations to a single differential equation, which was then numerically solved to find the major 

flow features. Afterward, Goto and Uchida investigated a contracting/expanding tunnel with 

porous walls, while Dauenhauer and Majdalani investigated the movement between parallel 

contracting/expanding permeable walls. To control the final solution, they examined laminar, 

unsteady, and incompressible flow inside these walls and added a novel constraint termed 

injection coefficient. Berman and Majdalani et al. addressed analogous issues, employing 

physical and wall expansion ratios as factors to convert the general partial differential 

equations into nonlinear ordinary differential equations. They used perturbation methods to 

answer these equations analytically before presenting numerical solutions. References [49-58] 

address recent research into deformable channel issues. Asghar et al. investigated heat 

transmission in a deformable permeable conduit, analyzing theory and experimental methods. 

Statement of the problem 

Consider the Carreau-Yasuda fluid subject to stretched surface. Where the magnetic field is 

applied in the y-direction with magnitude  𝛽0 and the stretching is regarded in the x-direction 

with stretching rate 𝑎1. 𝑇𝑤 is assumed to be the surface temperature, and 𝐶𝑤 is assumed to be 

the percentage. Let 𝑇∞ and 𝐶∞ is ambient temperature and concentration. 
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𝜕𝑢
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𝜕𝑦
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(1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
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2𝑢

𝜌
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𝑢
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𝜅
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𝑑
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𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=  𝐷𝑐

𝜕2𝐶

𝜕𝑦2 + (
𝐷𝑐𝜅𝑇

𝑇𝑚
) 

𝜕2𝑇

𝜕𝑦2,                                                   

(4)                                                

 

Conditions on boundary are as follows 

𝑢 −  𝑢𝑤 =  𝛽𝑣𝑢𝑦 +  𝛽𝑣𝑢𝑦𝑦,     𝑣 = 𝑉0,   𝑇 −  𝑇𝑤 =  𝛽𝑡𝑇𝑦 +  𝛽𝑡𝑇𝑦𝑦,    𝐶 = 𝐶𝑤,   at y=0 

𝑢 → 0,     𝑇 → 𝑇∞,     𝐶 → 𝐶∞,          at 𝑦 → ∞,                                                                         (5) 

Where ν denotes kinematic viscosity, 𝜅∗ porosity rate, 𝜅 thermal conductivity, 𝜌 density, 𝐶𝑠 

concentration susceptibility, 𝐶𝑝 specific heat, 𝐷𝑐 mass diffusivity, 𝜅𝑇 thermal mean 

temperature, 𝑇𝑚 fluid mean temperature, 𝛽0 the strength of magnetic field, 𝜅𝑟
2 chemical 

reaction rate, 𝐸𝑎 activation energy, 𝜎  electrical conductivity, and 𝜅0 Boltzman constant. 

 

Transformation is given as; 

𝑢 = 𝑎𝑥𝑓՛ (𝜂),            𝑣 =  −√𝑎𝜈𝑓 (𝜂),         𝜙 (𝜂) =  
𝐶−𝐶∞

𝐶𝑤− 𝐶∞
, 

𝜃 (𝜂) =  
𝑇− 𝑇∞

𝑇𝑤− 𝑇∞
,         𝜂 = 𝑦√

𝑎

𝜈
,                                                                                                   (6) 

The governing equation is obtained in its dimensionless form as; 

𝑓՛՛՛  + (
𝑛−1

𝑑
) (𝑑 + 1)𝑓՛՛՛𝑓՛՛(𝑊𝑒)𝑑 − 𝛽∗𝑓՛ + 𝜆𝜃 + 𝜆𝑁𝜙 − 𝑓՛2

+ 𝑓𝑓՛՛ − 𝑀2 𝑓՛ = 0,                         

(7) 

𝜃՛՛ + 𝑃𝑟𝐸𝑐𝑓՛2
(1 +

𝑛−1

𝑑
 (𝑊𝑒)𝑑 (𝑓՛՛)𝑑) + Pr 𝑓 𝜃՛ +  𝐷𝑓𝑃𝑟𝜙՛ = 0,                                               

(8) 

𝜙՛՛ + 𝐿𝑒𝑆𝑟𝜃՛՛ + 𝐿𝑒𝑓𝜙՛=0,                                                                                                              

(9) 
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The boundary conditions are as follows; 

𝑓 (0) =
−𝑣0

√𝑎𝜈
=  𝑊0,       𝑓

՛ −  𝑑 =  𝛾𝑣𝑓՛՛ + 𝑓՛՛՛𝛿𝑣,      𝜃 − 1 =  𝛾𝑡𝜃՛ +  𝛿𝑡𝜃՛՛, 

𝜙 (∞) → 0,     𝑓՛(∞) → 0,     𝜃(∞) → 0,     𝜙(0) = 1, 

Where 𝑊𝑒 indicate the weissenberg number, 𝛽∗ is the porosity number, 𝜆 signifies the mixed 

convection, 𝑁 represents the buoyancy ratio, 𝑃𝑟 is the prandtl number, 𝐸𝑐 denotes the Eckert 

number, 𝐷𝑓 represents the Dufour number, 𝐿𝑒 denotes the Lewis number, while 𝑆𝑟 is Soret 

number, 𝑀 is the magnetic field,  𝛿 is the relative temperature variable, 𝜎 the chemical reaction 

variable. These factors are stand in the form 

𝑊𝑒 =  Γ𝑥√
𝑎3

𝜈
,        𝛽∗ =  

𝜈

𝜅∗𝑎
,      𝜆 =  

𝐺r𝑥

𝑅𝑒2,     𝐺𝑟𝑥 =  
𝑔𝛽𝑇(𝑇𝑤− 𝑇∞)

𝜈2  𝑥3,          𝑁 =  
𝛽𝑐 (𝐶𝑤− 𝐶∞)

𝛽𝑇 ( 𝑇𝑤− 𝑇∞)
, 

Pr =  
( 𝜌𝐶𝑝) 𝜈

𝜅
,          𝐸𝑐 =  

( 𝑎𝑥)2

𝐶𝑝 ( 𝑇𝑤− 𝑇∞)
,       𝐷𝑓 =  

𝐷𝑐𝜅𝑇 ( 𝐶𝑤− 𝐶∞)

𝐶𝑆𝐶𝑝 ( 𝑇𝑤− 𝑇∞)
,         𝐿𝑒 =  

𝜈

𝐷𝑐
,          𝑅𝑒 =  

𝑎𝑥2

𝜈
, 

𝑆𝑟 =  
𝐷𝑐𝜅𝑇 ( 𝑇𝑤− 𝑇∞)

𝑇𝑚 ( 𝐶𝑤− 𝐶∞)𝜈
,        𝜎 =  

𝜅𝑇
2

𝑎
,      𝛿 =  

𝑇𝑤− 𝑇∞

𝑇∞
,         𝑀 =  √

𝜎𝛽0
2

𝜌𝑎
, 

 

Mathematical modeling: 

  

Let   

𝑓 =  𝑦1;      𝑓՛ =  𝑦2;        𝑓՛՛ =  𝑦3;       𝑦՛՛՛ =  𝑦3
՛;  

𝜃 =  𝑦4;      𝜃՛ =  𝑦5;        𝜃՛՛ =  𝑦5
՛ = 𝑦𝑦2; 

𝜙 =  𝑦5
՛;     𝜙՛ =  𝑦7;        𝜙՛՛ =  𝑦7

՛ = 𝑦𝑦3; 

The boundary conditions are as follows 

𝑦1 (0) −  𝑊0 = 0,         𝑦2 − 𝑑 −  𝛾 𝑦3 − 𝑆𝑟𝑦3
՛ = 0,        𝑦2 (∞) → 0,        

𝑦4 − 1 − 𝛾𝑡𝑦5 −  𝛿𝑡𝑦5
՛ = 0,      𝑦4(∞) → 0, 

𝑦6(0) − 1 = 0,             𝑦6 (∞) → 0,                                                                                           

(10) 

 

𝑓 =  𝑦1,                                                                                                                                        

(11) 

𝑦2 =  𝑦1
՛,                                                                                                                                      

(12) 
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𝑦3 =  𝑦2
՛,                                                                                                                                      

(13) 

𝑦3
՛ = 𝑦𝑦1,                                                                                                                                     

(14) 

𝜃 =  𝑦4,                                                                                                                                        

(15) 

𝜙 =  𝑦6,                                                                                                                                       

(16) 

𝑦3
՛ + (𝑊𝑒)𝑑  

(𝑛 − 1)( 𝑑 + 1)

𝑑
  𝑦3

՛ (𝑦3)𝑑 −  𝛽∗𝑦2 +  𝜆𝑦4 + 𝑁𝜆𝑦6 −  𝑦2
2 +  𝑦1𝑦3 − 𝑀𝑦2 = 0 

𝑦3
՛  [ 1 + (𝑊𝑒)𝑑  

( 𝑛 − 1)( 𝑑 + 1)

𝑑
 (𝑦3)𝑑 ] =  𝛽∗𝑦2 −  𝜆𝑦4 − 𝑁𝜆𝑦6 + 𝑦2

2 −  𝑦1𝑦3 + 𝑀𝑦2 

𝑦3
՛ =  

𝛽∗𝑦2− 𝜆𝑦4−𝑁𝜆𝑦6+ 𝑦2
2− 𝑦1𝑦3+𝑀𝑦2

1+(𝑊𝑒)𝑑(𝑛−1)( 𝑑+1)

𝑑
 (𝑦3)𝑑

                                                                                             

(17) 

𝜃՛ =  𝑦5 ,                                                                                                                                      

(18) 

𝜃՛՛ =  𝑦5
՛ ,                                                                                                                                      

(19) 

𝜙՛ =  𝑦7 ,                                                                                                                                      

(20) 

𝜙՛՛ =  𝑦7
՛ = 𝑦𝑦3 ,                                                                                                                          

(21) 

𝑦5
՛ =  − Pr 𝐸𝑐 𝑦3

2  [ 1 + 
(𝑛−1)

𝑑
 (𝑊𝑒)𝑑𝑦3

𝑑] − 𝑃𝑟𝑦1𝑦5 −  𝐷𝑓𝑃𝑟𝑦𝑦3                                             

(22) 

𝜙՛՛ + 𝐿𝑒𝑆𝑟𝜃՛՛ + 𝐿𝑒 𝑓 𝜙՛ = 0                                                                                                        

(23) 

𝑦7
՛ =  −𝐿𝑒𝑆𝑟 𝑦5

՛ − 𝐿𝑒𝑦1𝑦7                                                                                                           

(24) 
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                                                                   Fig.1                                                                                                     

In this section we analysis the behavior of velocity profiles with respect to various variables. 

Clearly, in the Fig 5.1 velocity rises as increase occur in the We. As we know that the relation 

of We with viscosity is inversely proportional. So if liquid is less viscous then surely it has 

more velocity. 

   

                                                                 Fig 2 
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In fig. 2 clearly seen that there is decrease in velocity as increase in the porosity parameter. 

Actually when we increase the value of porosity variable there is more resistance occurred in 

the working of fluid or liquid. Therefore this graph shows decline in velocity of liquid. 

 

                                                                 Fig 3 

In fig. 3 we examined the impact of temperature under various flow variable It is obvious that 

raising the Prandtl value reduces warmth. It occurs as a result of a decline in temperature 

diffusivity. Physically, the inside operation of the fluid, which generates heat, increased the 

rate of diffusion. 

 

                                                                  Fig 4 
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        Due to an increase in moving energy, raising the We number raises temperature. In Fig. 

4, it was shown that temperature rises as We number rises. When the We number is raised, 

thermal diffusivity is seen, which raises the temperature. 

 

                                                                  Fig 5 

Figure 5 analyzes the relationship between temperature behavior and Ec number. By raising 

the Ec number owing to an increase in rotational energy, temperature is improved. The system's 

kinetic energy increases with greater values than the Eckert number, leading to a rise in 

temperature.  

 

                                                                   Fig 6 

Fig. 6 influence the concentration profile with varying flow variable which is Prandtl number. 

As we seen that concentration profile is increasing with the higher values of Prandtl number.  
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                                                                 Fig 7 

Clearly, F ig.7 depict that increase in concentration with the higher values of Soret number. 

With increase in the value of Soret number concentration also enhanced. 

 

                                                               Fig 8 

From the Fig. 8 we illustrate that with the higher values of suction parameters there is 

decrement in the concentration of the fluid. 
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                                                                 Fig 9 

Fig. 9 shows that concentration is decline. Clearly, with the increment in LE number there is 

decrement in the concentration of fluid. 

REFERENCES 

 Asghar S, Mushtaq M, Kara AH. Exact solutions using symmetry methods and conservation 

laws for the viscous flow through expanding‐contracting channels. Appl Math 

Model. 2008;32:2936‐2940. 

 Ahmed, S. E., & Mahdy, A. (2016). Laminar MHD natural convection of nanofluid 

containing gyrotactic microorganisms over vertical wavy surface saturated non-

Darcian porous smedia. Applied Mathematics and Mechanics, 37(4), 471-484. 

 Asghar S, Abbas Z, Mushtaq M, Hayat T. Flow and heat transfer analysis in a deformable 

channel. J Eng Phys Thermophys. 2016;89:929‐941.  

 Ali A, Sulaiman M, Islam S, Shah Z, Bonyah E. Three‐dimensional magnetohydrodynamic 

(MHD) flow of Maxwell nanofluid containing gyrotactic micro‐organisms with heat 

source/sink.AIPAdvances. 2018;8.085303.  

 Ali A, Sajjad A, Asghar S. Thermal‐diffusion and diffusion‐thermo effects in a nanofluid 

flow with nonuniform heat flux and convective walls. J Nanofluids. 2019;8:1367‐

1372. 

 Ameen I, Shah Z, Islam S, et al. Hall and Ion‐Slip Effect on CNTS Nanofluid over a Porous 

Extending Surface through Heat Generation and Absorption. Entropy. 2019;21:801. 



International Journal of Advancements in Mathematics 1 (1) 2021. 47-63 

 

60 
 

Ashraf MB, Hayat T, Shehzad SA, Ahmed B. Thermophoresis and MHD mixed convection 

threedimensional flow of viscoelastic fluid with Soret and Dufour effects. Neural 

Comput Appl. 2019;31:249‐261. 

 Bataller RC. Effects of heat source/sink, radiation and work done by deformation on flow 

and heat transfer of a viscoelastic fluid over a stretching sheet. Comput Math Appl. 

2007;53:305‐316. 

 Boutros YZ, Abd‐el‐Malek AB, Badran NA, Hassan HS. Lie group method solution for two‐

dimensional viscous flow between slowly expanding or contracting walls with weak 

permeability. Appl Math Model. 2007;31:1092‐1108. 

 Bhattacharyya K. Effects of heat source/sink on MHD flow and heat transfer over a 

shrinking sheet with mass suction. Chem Eng Res Bulletin. 2011;15:12‐17. 

B. Mahanthesh, B. J. Gireesha, R. S. Reddy Gorla, F.M. Abbasi, S.A. Shehzad, Numerical 

solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-

linear stretching surface with prescribed surface heat flux boundary, J. Magnetism 

Magnetic Mater. 417 (2016) 189-196. 

 Dauenhauer EC, Majdalani J. Unsteady flows in semi‐infinite expanding channels with wall 

injection. AIAA. 1999:99‐3523.  

 Dauenhauer EC, Majdalani J. Exact self‐similarity solution of the Navier‐Stokes equations 

for a deformable channel with wall suction or injection. AIAA; 2001:2001‐3588. 

 F.Mabood, W. A. Khan, A. I. M. Ismail, MHD boundary layer flow and heat transfer of 

nanofluids over a nonlinear stretching sheet: anumerical study, J. Magnetism 

Magnetic Mater. 374 (2015) 569-576. 

 F. M. Abbasi, T. Hayat and A. Alsaedi, Numerical analysis for MHD peristaltic transport of 

Carreau-Yasuda fluid in a curved channel with Hall effects. J Magn Magn Mater, 

382, 104-110 (2015).  

Farooq. S, Hayat, T., Alsaedi, A., & Ahmad, B. (2017). Numerically framing the features of 

second order velocity slip in mixed convective flow of Sisko nanomaterial 

considering gyrotactic microorganisms. International Journal of Heat and Mass 

Transfer, 112, 521-532. 

Goto M, Uchida S. Unsteady flows in a semi‐infinite contracting or expanding pipe with 

injection through wall. Trans Japan Soc Aeronaut Space Sci. 1990;33:14‐27. 

 GH. R. Kefayati and H. Tang, Three-dimensional Lattice Boltzmann simulation on    

thermosolutal convection and entropygeneration of Carreau-Yasuda fluids, Int. J. 

Heat Mass Transf., 131 (2019) 346-364. 

 H. C. Lee, A nonlinear weighted least-squares finite element method for the Carreau— 

Yasuda non-Newtonian model, J. Math. Anal. Appl. 432 (2015) 844—861. 

Hayat T, Awais M, Imtiaz A. Heat source/sink in a magneto‐hydrodynamic non‐newtonian 

fluid flow in a porous medium: Dual solution. PLoS One. 2016;11. e0162205. 



International Journal of Advancements in Mathematics 1 (1) 2021. 47-63 

 

61 
 

Hayat T, Zahir H, Tanveer A, Alsaedi A. Soret and dufour effects on MHD peristaltic flow of 

Prandtl fluid in a rotating channel. Res Phys. 2018;8:1291‐1300. 

H. Waqas, S. U. Khan, M. Hassan, M. M. Bhatti and M. Imran, Analysis on the 

bioconvection flow of modified second-grade nanofluid containing gyrotactic 

microorganisms and nanoparticles, J. Mol. Liq., 291 (2019) 111231. 

 Jafaryar M, Farkhadina F, Mohammadian E, Hosseini M, Khazaee AM. Analytical 

investigation of laminar flow through expanding or contracting gaps with porous 

walls. Propulsion Power Res. 2014;3:222‐229. 

Jun HU, Henry D, Benhadid H, Xieyuan Yin. Transient growth in Poiseuille‐Rayleigh‐

Bénard flows of binary fluids with Soret effect. Appl Math Mech. 2016;37:1203‐

1218. 

Kandasamy, R., Periasamy, K., and Prabhu, K. K. S. Chemical reaction, heat and mass 

transfer on MHD flow over a vertical stretching surface with heat source and thermal 

stratification eff ects. International Journal of Heat and Mass Transfer, 48, 4751–

4761 (2005). 

Khan, W. A., Makinde, O. D., & Khan, Z. H. (2014). MHD boundary layer flow of a 

nanofluid containing gyrotactic microorganisms past a vertical plate with Navier 

slip. International journal of heat and mass transfer, 74, 285-291. 

Mrill, E. W., Benis, A. M., Gilliland, E. R., Sherwood, T. K., and Salzman, E. W. Pressure 

flow relations of human blood hollow fibers at low flow rates. Journal of Applied 

Physiology, 20, 954–967 (1965). 

McDonald, D. A. Blood Flows in Arteries, 2nd ed., Arnold, London (1974). 

Majdalani J, Zhou C, Dawson CA. Two‐dimensional viscous flow between slowly expanding 

or contracting walls with weak permeability. J Biomech. 2002;35:1399‐1403. 

Majdalani J, Zhou C. Moderate‐to‐large injection and suction driven channel flows with 

expanding or contracting walls. ZAMM. 2003;83:181‐196. 

Matebese BT, (2010) Adem AR, Khalique CM, Hayat T. Two‐dimensional flow in a 

deformable channel with porous medium and variable magnetic field. Math Comput 

Appl. ;15:674‐684.  

Majeed A, Javed T, Ghaffari A. Numerical investigation on flow of second grade fluid due to 

stretching cylinder with Soret and Dufour effects. J Mol Liquids. 2016;221:878‐884. 

M. M. Bhatti, T. Abbas, M. M. Rashidi, M. El-Sayed and Z. Yang , Entropy generation on 

MHD Eyring—Powell nanofluid through a permeable stretching surface, Entropy, 

18 (2016) 224. 

M. M. Bhatti,T. Abbas, M. M. Rashidi and M. El-Sayed Ali, Numerical simulation of 

entropy generation with thermal radiation on MHD Carreau nanofluid towards a 

shrinking sheet, Entropy, 18 (2016) 200. 



International Journal of Advancements in Mathematics 1 (1) 2021. 47-63 

 

62 
 

M.I. Khan, M.I. Khan, M. Waqas, T. Hayat and A. Alsaedi, Chemically reactive flow of 

Maxwell liquid due to variable thicked surface, Int. Commu. Heat Mass Transf., 86 

(2017) 231-238. 

M. I. Khan, M. Waqas, T. Hayat and A. Alsaedi, A comparative study of Casson fluid with 

homogeneous-heterogeneous reactions, J. Colloid Interface Sci., 498 (2017) 85-90. 

Mohyud‐Din ST, Ali Zaidi SZ. Soret and MHD effects on bioconvection wall jet flow of 

nanofluid containing gyrotactic microorganisms. Neural Comput Appl. 

2017;28:S599‐S609. 

 M. Nazeer, N. Ali, T. Javed and M. Razzaq, Finite element simulations for energy transfer in 

a lid-driven porous square container filled with micropolar fluid: Impact of thermal 

boundary conditions and Peclet number, Int. J. Hydrogen Energy, 44 (2019) 7656-

7666. 

N. Ali, M. A. Javeda and M. Sajid, Theoretical analysis of the exiting thickness of sheets in 

the calendering of FENE-P fluid, J. Non-Newtonian Fluid Mech., 225 (2015) 28-36. 

 N. S. Akbar, A. Ebaid, Z. H. Khan, Numerical analysis of magnetic field effects on Eyring-

Powell fluid flow towards a stretching sheet, J. Magnetism Magnetic Mater. 382 

(2015) 355-358. 

Peralta JM, Meza BE, Zorrilla SE., Analytical solutions for the free-draining flow of a 

Carreau-Yasuda fluid on a vertical plate. ChemEng Sci168 (2017) 391—402. 

Si X, Zheng L, Zhang X, Chao Y. Perturbation solution to unsteady flow in a porous channel 

with expanding or contracting walls in the presence of a transverse magnetic field. 

Appl Math Mech. 2010;31:151‐158. 

Si XH, Zheng LC, Zhang XX, Li M, Yang JH, Chao Y. Multiple solutions for the laminar 

flow in a porous pipe with suction at slowly expanding or contracting wall. Appl 

Math Comput. 2011;28:3515‐3521.  

 Srinivas S, Reddy AS, Ramamohan TR. A study on thermal‐diffusion and diffusion‐thermo 

effects in a two dimensional viscous flow between slowly expanding or contracting 

walls with weak permeability. Int J Heat Mass Transfer. 2012;55:3008‐3020. 

 S. V. Desale, V. H. Pradhan, A study on MHD boundary layer flow over a nonlinear 

stretching sheet using implicit finite difference method, Int. J. Res. Eng. Technol. 2 

(2013) 287-291. 

Srinivas S, Reddy AS, Ramamohan TR, Shukla AK. Influence of heat transfer on MHD flow 

in a pipe with expanding or contracting permeable wall. Ain Shams Eng J. 

2014;5:817‐830. 

T. Hayat, F. M. Abbasi, B. Ahmad, A. Alsaedi, Peristaltic transport of Carreau-Yasuda fluid 

in a curved channel with slip e ff ects, Plos ONE, doi: 

http://dx.doi.org/10.1371/journal.pone. 0095070. 

T. Hayat, F. M. Abbasi, B. Ahmad, A. Alsaedi, peristaltic transport of Carreau-Yasuda fluid 

in a curved channel with slip effects. 

http://dx.doi.org/10.1371/journal.pone.%200095070


International Journal of Advancements in Mathematics 1 (1) 2021. 47-63 

 

63 
 

Tripathi RK, Mau A. Combined heat and mass transfer innatural convection on horizontal 

and inclined plates with variable surface temperature/concentration or heat/mass 

flux. Acta Mechanica. 1995;109:227‐235. 

T. Hayat, F. M. Abbasi, A. Alsaedi, F. Alsaadi, Hall and Ohmic heating eff ects on the 

peristaltic transport of a Carreau—Yasuda fluid in an asymmetric channel, 

Zeitschrift Naturforschung A 69 (2014) 43—51.  

 T. Hayat, A. Tanveer, A. Alsaedi, Mixed convective peristaltic flow of Carreau—Yasuda 

fluidwiththermal depositionandchemical reaction, Int. J. Heat Mass Transfer96 

(2016) 474—481. 

T. Hayat, Z. Nisar, Ahmad, H. Yasmin, Simultaneous effects of slip and wall properties on 

MHD peristaltic motion of nanofluid with Joule heating, J. Magnetism Magnetic 

Mater. 395 (2015) 48-58. 

T. Hayat, M. I. Khan, M. Farooq, A. Alsaedi, M. Waqas and T. Yasmeen, Impact of 

Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over 

a variable thicked surface, Int. J. Heat Mass Transf., 99 (2016) 702-710. 

Z. Alloui and P. Vasseur, Natural convection of Carreau—Yasuda non-Newtonian fluids in a 

vertical cavity heated from the sides, Int. J. Heat Mass Transf., 84 (2015) 912-924. 

15. 


