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Abstract

This paper presents the innovative idea to obtain the improve version of well known
inequalities for different type of convexities and pre-invexities by Atangana-Baleanu
(AB) fractional operators. We establish the fractional inequalities for h-Godunova
Levin function, defined by Ohud Almutairi and Adem Kiligman with the AB-operators.
Moreover, we discuss the significant behavior of Hermite-Hadamard type fractional
integral inequalities to the AB-fractional operator and discuss its applications.

Keywords: Fractional Inequalities, h-Godunova-Levin convex and prein-
vex function, Hermite-Hadamard inequality, Fractional operators.

1 Introduction

The convex function has widely utilized function by the researchers to make fruitful innova-
tions in literature and in real world problems. The concept of convexities have prevailed many
mathematical problems and achieved sustainable goals, due to this most of the researchers
are frequently introduced the new functions related to convex. Convex functions and its gen-
eralizations have obtained immense applications in the field of fractional-inequality theory
due to wide range of features, and usefulness for numerous work such as numerical integra-
tion, convex programming and special means. To markable theory of convex function and
its significant applications have been discussed [24, 25, 26, 27, 1, 28, 29, 30, 31, 32].
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Definition 1. [7, 8/ The convez function p : J — R, J C R is defined fort € [0,1], Ymy,mq €
J as follows

oltmi + 1 - t)mg] < tp(mi) + (1 — t)p(ms).

Definition 2. [6] The pre-invex function o : J — R, J C R is defined for my,my € J and
A € [0,1] as follows
p(ma + AC(m1,m2)) < Ap(ma) + (1 — A)p(mo),

where J is an invexr set with respect to .

Definition 3. [33] Let h : (0,1) — R. A non-negative function @ : J — R is said to be
h-Godunova-Levin, Ymy,ms € J and t € (0,1), if the following inequality holds:

p(m;) p(ms)
h

p(tmy + (1 —t)my) < 0 = 1)

Definition 4. [33] Let h : (0,1) — R. A function p : J — R is said to be h-Godunova-Levin
pre-invex with respect to ¢, if the following inequalities holds
p(m) | p(ms)

where Ymy,my € J, t € [0,1] and J be an invex set.

Fractional calculus has rapidly developed in applied mathematics and analysis of in-
equalities. Fractional operators resolved many problems related to the extensions and gen-
eralizations of well known inequalities by successfully implemented the fractional operators
having modified version of special functions as its kernel for different type of convexities and
pre-invexities [24, 25, 26, 27, 1, 28, 29, 30, 31, 32|. The gradually development of fractional
operators have increased the demand of special functions, which utilized act as its kernel and
discussed many applications by the researchers [18, 19, 20]. Atangana-Baleanu fractional in-
tegral operator which has revealed the researcher’s attention towards this tool because of its
efficiency and effectiveness in applying to engineering and many other fields as it has more
powerful properties than the previously known operators, is defined as:

Definition 5. [21, 22] Consider ¢ € H'[u,v].The Atangana-Baleanu integral operators
I{p(x)} and IS{p(x)} with w > v and a € [0, 1] are defined as:

I {pla)} = 2@3 o) + B / -0 (),

and

I {ola)} = s 9o+ et [ (=) o0

where B(a) is normalization function with B(0) = B(1) = 1 and the Gamma function I'(«)
is defined in the next definition.
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Definition 6. [23]/The integral representation of gamma function is defined as

INa) = / e " dr
0
for,R(a) > 0.

Fractional integral inequalities is one of the emerging branch of fractional calculus[12,
13, 14, 15, 16, 17]. Hermite-Hadamard and its related type inequalities are highly worked
by the researchers as these are proved to be helpful tools in the field of analysis, numerical
integration error estimations and many others applied sciences, is defined as:

1 2
o5 = [ otajar < L ot
2 mo — mi 2
for convex function (2, 8, 9, 10, 3, 11] p: J — R,my,my € J;my < mg,my,my € R, J C R
The fractional version of Hermite-Hadamard inequality using well known Riemann-Lioville
fractional integral operator is defined as:

Definition 7. [37]
my A ma I'(a+1) p(m1) + p(m2)
P\ = 2(mg — my)e 2 '
The purpose of our work is to develop new inequalities using AB-fractional integral
operator to give a new approach to the inequalities theory.

[J;f@(mz) + s p(mi)| <

2 Main Results

In this section, we develop new version of fractional inequalities of h-Godunova Levin con-
vex function using Atangana-Baleanu fractional operator, and also modification of Hermite-
Hadamard type Inequalities by Atangana-Baleanu fractional operators (ABFO) has been
discussed.

Lemma 1. [}/ Let 6 € [0, 1], there exist two cases
1. Forn € [0,1], then we have
(1—-6)" <2t — g
2. Forn € [1,00], then we have
(1—6)">2" — ¢
Lemma 2. Let o : [my, ma] — R be a twice differentiable mapping on (mq, my) with my <

ma. If ¢ € Limy, ms], then the following fractional integral inequality holds for Atangana-
Baleanu integral operator defined as in definition 5:

p(m1) + p(ms) (1-a)l(e)]  B@I'(a)
2 {1 " (ma — ml)“] 2(mg —my)®

8 I, {p(ma)} +* B, 16, {o(ma) |
_ (mg — my)? /1 1—0tt — (1 —0)>!

5 ) " (Omy + (1 — 0)my)de.
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Proof. Consider the following integral

1 1
/ (1= 09 — (1 — )Y (0, + (1 — B)ma)dl — / o (Omy + (1 — 8)my)dd
0 0
1 1
- / 0t 0" (Omy + (1 — 0)my)dh — / (1 —0)*"o"(Omy + (1 — 0)my)do
0 0

Integrating two times by parts, gives

(lea__gnll)) /O (1 _ g+l _ (1 . 9)a+l)p/,(9m1 + (1 B Q)mg)dQ _ @(ml) ‘g p(m2)
_ %/0 (1= 0)* " p(6my + (1 — B)ms)do

1
-2 / Lo (Omy + (1 — 0)ma)db.
0

Substituting dm; + (1—60)my = x and by adding subtracting the terms (1_%)(‘2 ()ml) , (1_?@()7"2),
leads to the result. O

By using the lemma 2, we will present the next result.

Theorem 1. Let p : [0,ms] — R be a differentiable mapping.If |¢"|? is measurable and
h-Godunova Levin convex on [0,ms] with 0 < my < ma, then for the Atangana-Baleanu
fractional operator (ABFO) is defined in 5, then the following inequality holds

] )] Bt 125, ]
(Mg — my)2(217

_1) " q 1" q % 1L %
L E D (o) ([ ras)

Proof. 1f we consider the absolute value of lemma 2 and using Hoélder’s integral inequality
with lemma 1, we have
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(m2 _ ml) myTma matmy
m2 _ ml 2 /1 ‘ 1 — eoz—i-l 1 _ 9)044-1
0 o+ ].

Hp"(@ml + (1 —0)my)|db.

< P (Mg —e>a+l—1|f°d9)’l’( /01|p"<em1+<1—e>m2>|we);.
el ([ 1o —1|pde)l(rp"<m1>|q+|p"<m2>\q)é( / 1%%);.

< mfﬁ ([ pcw);(|p”<m1>|q+|p"<m2>|q)3( /Olﬁde)z.

- ey (gmps ) ([ i)

1,1 _
Where;—ka—l O

Theorem 2. With the assumption of theorem 1 with the power mean inequality, then we
have the following result

e e i e R R

(my —my)* (2 —1)' 73 ( / 6+ <1h . )e>a - 1|d9)i'

- 2+ 1)
Proof. Proceeding again as in theorem 1 with Power mean integral inequality, we have

Q=

(19" (ma)|? + 9" (m2)[)

'pml Fom), (Lot B o gy ) 48,1,

mg — m1 (MQ — ml) miTme m2rmi

— ot — (10 ,
/ — S " B+ (1 — Byma)db.

1

a+1 ( 0%+ 1_)_1|d9> (/ 0%+ (1 -6 1||@”(9m+(1—9)m2)|ch)

:%@”ﬂ (m (m)l? + 1/ (m ) (/ o+ a—ud@)é

1,1
WhereE—I—a—l O

Theorem 3. Let p : [mq, ma] — R be a h-Godunova Levin convex function where 0 < my <
my and © € Li[my, mo],with h : (0,1) — R is a positive function and h(0) # 0,then for
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Atangana-Baleanu fractional integral operator defined as in definition 5, we have

(1—a)l(a) p(m1) + p(ms) ol 1 a—1
T 2y —my)e 2 O‘/O ORI

[p(m1) 4+ p(my)] <

Proof. Since p is h-Godunova-Levin convex on the interval [my, ms], let z,y € [my, ms] and
¢ €(0,1), we have

p(Cr+(1=Cy) <

where by taking
r=0my+ (1 —0)ma,y = (1 —60)my + Omy

and )
‘=3
leads to N
my +m
@( 1 . 2) < h(l) [p(gml + (1 — Q)mg) + p((l — 49)7711 + ng)} .
2
Multiplying the inequality by m@‘kl and integrating the resulting inequality on the
interval [0, 1] with respect to 6 and by using some simple calculus, gives
1 my + mo 1 1 o
h(= <
D o) BT = = e BT (@)
ma m2
{/ (my — w)* L p(w)dw +/ (t — ml)o‘_lp(t)dt}
mi mi
or
h(3)  my+my B(@)l'(a) Tap AB
< g I |
S o) < 5o e [ )+ L ()
(1 - )T (a)

 2(mg —my)° [p(m1) + p(ms)] (1)

For right side of inequality, again using h-Godunova-Levin convexity of p, we have

< p(m) 4 p(ma)

p(Omy + (1 —0)msy) < 0 Bl 0)

and
o((1 = 0)my + Omy) < h%(”zlg) . p}%;)_

Addition of these two inequalities , gives

o(@my + (1 — 0)ma) + p((1 — O)my + Oms) < (p(m1) + p(m2)) [h(le) + h(ll_ 9)]
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Proceeding as above, we reach

(1-a)(a)

SO a5 1 Ao} 44 5,15, fotmo)] - L=

2(ms — my)° [p(m1) + p(m2)]

< o)+ olma)] [ |15+ g 0. ®)

Combining (1)and(2), we reach to the required inequality. O

Corollary 1. Replacing h(0) by ﬁ and o = 1 in Theorem 3, we obtain Hermite-Hadamard
type inequality for h-convex function by M. Z. Sarikaya et. al [5].

2h1(§)@(m1 —; m2> = : /m p(0)do < [p(m1) + p(m2)) /01 h(6)ds..

- ml) m

Corollary 2. Choosing a =1 and h(0) = els, we obtain theorem(2.1) by Dragomir in [?] .

23-1@(m1+m2>§ : /m2@(9>d9<p(m1)+p(m2).
msy

2 — my m1 - s+1
Lemma 3. Consider a function o : J = [my,m; + ((mg,my1)] — R with m;,my € R,
© € Li[my,my + ((ma,mq)] be a differentiable function where J = [my,mq + ((mag, my)]

is taken to be an open invexr set with respect to ¢ : J X J — R with {(mg,my) > 0 for
my,mg € J. Then for Atangana-Baleanu fractional integral operators defined as in definition
5, the following inequality holds with n = my + ((ma, my)

p(m1) + p(n) (1-a)l(e)]  B(a)(a)
2 [ " (a(mg,ml)} 2¢%(mg, my)

45 L o)} + 2 15, {p(ma)}

_ M/O [0% = (1 = 0)%]g'(m1 + ¢ (1mz, ma))db.

Proof. 1f we consider the following fractional integral

1 1
I= / 6% o' (my + 0¢(ma, my))do + / —(1—=0)*¢ (my + 0¢(ma, my))db,
0 0

and
I = Il + Ig.

taking integrating by parts of Iy, we have

[ pln) o« "o rmm e plo)
e [C(m%ml) C(ma, 1) /ml (C(mzaml)) C(mz,ml)d
- p(n) B(a)T'(«) ABJa (1—a)(e)

C(mg,my) a ¢etl(mg,my) ™ mi (M)} + m@(ml)
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On the same manner as above, we have

=2 BT ap jag )y
C(ma,ma)  ¢*F(ma, my) il
(1 —a)l(a) )
Ca+1 (mQ; ml) ’
Multiplying I by M, We get the result. O

By using lemma 3, we present the following theorem.

Theorem 4. If we consider a function o : J = [my,m1 + ((ma, mq)] — (0,00) with J € R,
be a differentiable function on J. Also, suppose that |¢'| is a h-Godunova-Levin preinver
function on J, taking n = my + ((mo, my), then inequality holds for (ABFO) as follows

’Ko(ml) +p(n) { I 04)1“(04)} _ _B@)l(a)

2 Co‘(mg,ml) QCO‘(mg,ml)
42, 120t} +4 213, {otom)}|
< St )+ e [ =
Proof.
p(m1) + p(n) (1-a)'(a)]  B@I'(a)
‘ 2 {1+C°‘(m2,m1)} 2¢(mg, m;)
2, 120t} +4 215, (otom)}|
< L) [ g (1= 0) g -+ 6 o, ).
((mg,ma) [*) ), af|@/ma) | 9'(ma)
ST/O 0" = 0= 0% ) +h(1—0)’d6
C(mg,my) ! o o }@/(ml)‘ ' (ma)
=T /0’9 ~a-or| 0 +h(1—9)]d0
= L) s 4+ ] [ g
which are the required inequality. O]

Theorem 5. Suppose that o : J = [my,mq + ((mg,mq)] — (0,00) with J € R, be a
differentiable real valued function on J. Also, suppose that |¢'|? is a h-Godunova-Levin
preinvexr function on J with p > 1 and q¢ = p%l, taking n = my + ((ma,mq), then for
Atangana-Baleanu fractional integral operators defined in definition 5 , we have
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p(m1) + p(n) (1-a)(e)] B@I'(a)
‘ 2 {1 " ¢*(ma, my) } 2¢%(ma, m1)

8 T n)} + £ 1 {p(ma)} '

mi'n

S—C(mzml>(!p(m1)!q+|p (m2) (/ 6" — (16 ypde)’l’(/;%de)?

Proof. 1f we consider the lemma 3, we have

p(m) + p(n) [1 (1- a)F(a)} _ _B@)l(a)

2 ¢*(ma, my) 2¢*(mg, m;)

8 I {pm} + 1, {om)} |

mi1in

< M/ 10 — (1 — 0)||¢/ (ma + 0¢(ma, my))|db

By applying Holder’s Integral Inequality,

’@(ml) + p(n) [1 (1- Q)F(@)} _ B()I'(a)
2 C*(mg, my) 2¢*(mg, my)

[AB Li{p(n)} +* ffﬁil{@(ml)}] ‘

miin

< Stz (Mg 1 ppran) % ([ Iotmi+ e<<m2,m1>>\"d9); ®)

- 2

Where% + é = 1.
If we consider |p'|? is supposed to be h-Godunova-Levin preinvex, we obtain

L m)lt |l (ma)e
< n(o) *h(l—@)d@

0

[ 16 + o, mippas <

< (|¢'(m)]" + Ip’(mz)P)/o %d@.

By using (4) in (3), then it leads to the following result.

Corollary 3. There are two possible results are obtained as follows

1. If « =1 in theorem 5, then we obtain the theorem (3) in [33]

mi+¢(me,m1)

2 C(m%ml)

(f o)

p(m1) + p(ma + C(ma, m1)) L / p(H)dQ‘

mi

Q=

< Sm2 ) o )19 1 | (ma) )
2(p+1)»
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2. Here by taking ((mg, my) = ma—my and h(0) =
by Mudassar in [36]

a5, we obtain theorem (2.1) introduced

me;pWﬂ_OwlmQ/mp@w‘

¢ =) () \p'(mzw)?

T 2p+1)r s+ 1

Corollary 4. If we consider o = 1, h(f) = 6° ie if p is s-Godunova-Levin in theorem 5,
then we obtain theorem (3.2) by Noor in [35] as follows

'Mmﬂ+p@g+ammm0%_«mimﬁ/%ﬁwmm”mmw‘

< Slma,m) {!mmlw"l + !@'(m2)|f1}”;1.
T 20+ 1) 1—s

Theorem 6. If we consider the assumptions of theorem 5, we get the following inequality
related for Hermite-Hadamard inequality as follows

‘@(ml) + p(n) {1 N a)T(a)} _ _B@)l(a)

2 ¢*(mag, my) 2¢(mg, M)
8 I {pn)} 4+ B I {p(ma)}] |
1

C(m%ml) q % _ 17%
ng)(\m )l + 19/ (ma)|9)F (1~ o)

[t

Proof. If we considering lemma 3 and Power-mean inequality, we have

‘@(ml) +p(n) { G oz)F(oz)] _ _B(a)I'(e)

2 (a(mg,ml) 2Ca(m2,m1)
2 12 {pm} +4 15, {om)} |
< C(WTJTH/ |0a (1-20) Hp (mq + 6¢(ma, mq) {d@

’@(ml) + p(n) {1 (1- Oé)F(Oé)] _ B(o)I'(a)
2 ¢*(mg, my) 2¢*(ma, my)

[ I {pm} +4 15, {om)} |

< M(/O \6)"—(1—0)°‘|d9)1;(/01}9"“—(1—9)‘”“@’(m1~|—9§(m2,m1))|qd9)q.
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If |¢'|7 is supposed to be h-Godunova-Levin preinvex, we get

(A wa—(1—eyﬂpxml+eqm%nnnﬁw5;é wa—(1_9rw(mézyp4—fﬁfﬂg>d6

< [0 e+ ity

Now, by basic calculus,we have
! 2 1
0% — (1 —60)*|do = 1——
[ = aorlo= s (1 5)

Corollary 5. If a = 1, we obtain inequality reported by Ohud-Almutairi and Adem Kiligman

]

Corollary 6. If ((ma,mq) = my —my, h(0) = %, g=1, and o = 1, we have

FWﬂ+Mmﬁ_ L /MM@W

m2—m1(
2 mo —

<
- 3

|9 (ma)| + [¢'(m2))),

which is reported by Dragomir and Agarwal in [3]).

Corollary 7. If « =1, h(f) = 0%, we obtain theorem (3.3) by Noor in [35]

‘ o(m1) + p(my + ((mg, my)) 1 /m1+C(m27m1)

2 C(m27 ml)

< S s+ ]| 22 .

pmw‘

mi1

3 Conclusion

Atangana-Baleanu fractional integral operator is found to be very fruitful by researchers in
various fields. Its property of reduction to original function when a = 0 makes it more
powerful and attractive operator as compared to other fractional integral operators.The
fruitfulness of AB- operator encouraged us to work with AB- fractional operator in the field
of inequalities which opens a new way for the advancement in this field. We have established
new version of Hermite-Hadamard type fractional integral inequalities by using Atangana-
Baleanu fractional operator (ABFO) for h-Godunova Levin convex and h-Godunova Levin
preinvex functions.
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