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Abstract

This paper predict the topological forms of a mild solution for a control problem governed by semi
linear fractional impulsive evolution equations with non local conditions. The Rδ property of the mild
solution set gained by applying the steps of non compactness and a fixed point theorem of condensing
maps and a fixed point theorem of non convex valued maps.Then this result is applying to the show that
the control problem which is done and has a reachable invariant set governed by non linear perturbations.
The gained conclusions are also applying to properties the almost controllability of presented control
problem.
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1 Introduction

Fractional calculus gives a best tool to represents the memory by physical and heredity. Fractional order
derivated were to be flexible for representing the manners of visco elastic physics, which were successfully
applicable to properties of constitutive relations of visco elastic and non-newtonian physics. Fractional
derivatives are increasingly used in imaging to take the advantage of nonlocal behavior. physical problems
suit in differential equations of fractional order, but they not suited by differential equations. So recently,
many researcher have done valuable performance in electro magnetic, control theory, signals, visco elasticity,
biological, engineering problems, fluid flows. Hybrid phenomenons is a set of impulsive work with states
converges accordance to leminar continuous time delay. In this article we also experience with fractional
neutral differential equation including special properties. The existence of mild solution are maintained. The
evolution with neutral theory fulfill the much evolutionary changes that exist at molecular level and much
of variation between species are because of random genetic variations of mutant that are magnetic electively
neutral. The availability of a mild solution to the fractional control issue, which is controlled by semi-linear
impulsive and neutral nonlinear systems with non-local circumstances, is the focus of this article.“Fractional
calculus and its applications in math and alternative Sciences” is dedicated to study the recent works within
on top of fields of divisional calculus done by the leading researchers. The mild solution set for the control
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problem governed by the semi linear fractional impulsive and non local evolution equations of the following
form: 

CD℘
0 a(t) = Aa(`) +Bu(`) + (g(`, a(`− a),

∫ `
0
h(`, κ, a(κ)))dκ)

` ∈ J = [0, b], ` 6= `i, i = 1, ...,m, 1 < ℘ < 2

δa(`i) = Ii(a(`i)), i = 1, ...,m

χy(0) = a0 + ω(a) a′(0) = a1

(1)

The article for this special issue were designated once a careful and studious peer-review method [1].
Mathematical modelling of real-life issues typically ends up in fractional differential equations and numerous
alternative issues involving special functions of mathematical physics likewise as their widespread and gen-
eralization in single or additional variables. Additionally, most physical processes of fluid, quantum physics,
electricity, ecological systems and lots of alternative models are limited at intervals and also their domain
of validity is controlled. However, it becomes progressively necessary to be at home with all ancient and
recently developed strategies for resolution divisional order PDEs and also applying of thoes methodology.
Fractional calculus may be a branch of Mathematical analysis that studies the many totally different po-
tentialities of process real numbers powers or imaginary number powers of differentiation operators ‘D’ and
of integration operator ‘J’. Fractional order differential equations of non-integer order differential equations
which may be gained in time and area with power low memory Kernel of non-local relationship.
See official [8], [3], [2], [16], [10] , [5], [6] . The thought of divisional calculus was at first bestowed by Laibniz
over three hundred year past.
Recently, the difficulty on the metric form sets for statements and inclusions includes many properties and
Rδ condition that are uses by several researchers [9], [7], [4], [12], [13], [14]. We have a tendency to refer the
reader to [11], [15], obtained the compactness and Rδ correct of gentle resolution set for an effect drawback
mentioned by semi-linear divisional delay evolution equation of the subsequent type. Reachable invariant
set is so governable.
However, in some sensible solutions, several natural phenomenans in population dynamics, chemistry, med-
ication and maths could also be study to correct changes like shocks and perturbations. Natural processes
can’t be delineated by higher order equations. It’s natural to correct them by using the inclusions (Semi-
linear). For your information, there’s no proper to examine the Rδ property. Approximate controllability
plays a very vital role within the control theory and mathematics due to they are adjacent to the many
applications. Specifically, few scintist gave a lot of attention to the approximate controllability for a few
types inclusions. [16], [17].

2 Preliminaries

Let(Z, ||.||) is a Banach space. The Banach space Lp(H,Y ) denotes the all X-valued Bochner integrable
functions and this Banach space has norm of this form ||a||pL(H,Y ). And the Banach space D(H,Y ) is the
metric space of all Z-valued compact functions and this space has a norm of ||a||D = sup`∈H ||a(`)||. Another
Banach space QD(H,Y ) = Y : H → Y : a is compact. And this space has a norm of ||a||MN = sup ||a(`)||.
Let X and Y be spaces.we denote as:

%f(c)(Z) = {E ⊂ X : E is a nonempty compact (concave)}
Kz(Z) = {E ⊂ X : E is a nonepmty connect (concave)}

For a given multi-valued map, the G(%) is the expressed form of %. If ε is a subset of M then we express the
all pre-image of ε by %−1(ε).
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Definition 2.1. [12]. Suppose N be a topological space then
a) If each continuous map g : E → M , E possesses a continuous extension over M , B is a subset of some
metric space N , then Q is said to be permenet retract.
b) If M is homeomorphism to the union of a increasing sequence of compact absolute retracts then M is
compact absolute retracts.

Lemma 2.1. % is u.s.c(upper semi continuous) if % : Z → Pf (Z) is a open and semi-compact multi-valued
map.

Definition 2.2. AR and ANR space

(i) Z is called to be absolute retract space, each continuous function ν : E → Z can be explored to a
continuous function ν : G→ Z.

(ii) Z is called to be absolute neighborhood retract, ∃ a nearby W of E and a explored ν : U → Z of ν.

Remark 2.2. Z is AR Space and also ANR space. Furthermore, suppose E be a AR space. Then E be a
concave subset of a commenly concave linear space.

Definition 2.3. If ∃ a point z0 ∈ E and a continuous function g : E × [0, 1] → E that is g(z, 1) = z0 and
f(z, 0) = z for every z ∈ E, then E is contractible.

Definition 2.4. If ∃ a increasing sequence Ln of compact non empty contractible sets such that

L = ∩∞n=1Ln

then subset L of topological space is said to be Rδ − set.

Remark 2.3. Rδ set is non empty, compact, connected. The underlaying results are here:
Compact + convex ⊂ compact AR-space ⊂ compact + contractible ⊂ Rδ-set
and each resulst are good.

Definition 2.5. If % is u.s.c and %(z) is an Rδ-set for every z ∈ Z, then multi-valued map % : z → Qg(W ).

Remark 2.4. If each double valued continuous map is Rδ map. surly,

Theorem 2.5. Let the π : Y → Q(Y ) can be seprated as

φ = φnoφn−1o...oφ1,

Suppose Y be a AR space. Here ∅i : Xj−1 → Q(Xj), j, ....m, are Rδ maps and Xj , j = 1, ...m − 2, are
ANR-Spaces, and X0 = Xn = X are AR spaces. φ admits a fixed point, if there is a compact subset E ⊂ Y
that is φ(Y ) ⊂ E.

Definition 2.6. (≥, ~) is a partially ordered set and suppose Y be a Banach space. A function ν : Q(Y )→ ~
is called to be a MNC in Y if ν(boε) = µ(ε), for each ε ∈ Q(Y ), Where boε is a ν is called to be:

(i) non singular if ν(a ∪ ε) = ν(ε) for any a ∈ X, ε ∈ Q(Y )

(ii) monotone if, for each ε0, ε1 ∈ Q(Y ) such that ε0 ⊂ ε1, one has ν(ε0) ≤ ν(ε1)

(iii) invariant with reffers to the intersection with a compact set if ν(E ∪ ε) = ν(ε) for each relatively
compact subset E of Y and ε ∈ Q(Y ); If ~ is a cone in a normed space, we can say that ν is

(iv) regular if ν(ε) = 0 is equal to the relative compactness of ε.
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(v) algebraically half additive if
ν(ε0 + ε1) ≤ ν(ε0) + ν(ε1)

for any ε0, ε1 ∈ Q(Y ).

Example of NOC hausdorff NOC : γ(ε) = inf{ε : ε has a finite ε − net} which holds all the above
charecteristics.

υ(ε) = max[γ(E),modC(E)],

Where ε is a subset of PC([0, y];Y ), 4(ε) represents the collection of all countable subset of ε and

(i) the modaim of equi-continuity

modc(ε) = lim
ε→0

sup
a∈ε

max
|`1−`2|<ε

||a(`1)− a(`2)||

(ii) the damped mod of the fiber compactness

γ(ε) = sup`∈[0,b]e
−L`a(ε(`)) with ε(`) = a(`) : a ∈ ε

the range is of NOC υ is a cone. As proved υ monotone, non singular and regular.

Definition 2.7. A continuous map F : G ⊂ Y → Y is prefferd to as condensing with respect to a NOC ν

if, for any bounded subset ε ⊂ D which is not relatively compact, we gain ν(F (ε))) 6= ν(ε).

Theorem 2.6. The fixed point set Fix(g) = a : a ∈ g(a) is compact. If ε is a bounded concave open subset
of a Banach space Y and G : ε→ Lz(ε) is a u.s.c ν condensing multi-map.

Lemma 2.7. ||un||a ≤ ϕ(`) ∀ n=2,3,... and a.e. ` ∈ [0, y]. The sequence un be integrably bounded. Here
ϕ ∈ L1([0, a], C+).

Now we show few fundamentle definitions of the fractional calculus theory.

Definition 2.8. The fractional integral of order ℘ with under limit zero for a function a(`) is stated as
under :

I℘a(`) =
1

Γ(℘)

∫ t

0

(`− κ)℘−1a(κ)dκ, ℘ > 0, ` > 0

regarded that the right hand side is point wise stated on [0,∞), where Γ is the gamma function stated by

Γ(℘) =

∫ ∞
0

`℘−1e−`d`

Definition 2.9. The R L functional derivative of ℘ either the under a : [0,∞)→ R is stated :

LD℘
0 a =

1

Γ(n− ℘)

dn

dN`

∫ t

0

(`− κ)n−℘−1a(κ)dκ, ` > 0, 0 ≤ m− 1 < ℘ < m.

Remark 2.8. (i) The constant with caputo derivative is equal to zero.

(ii) The integrals which shows in above definitions are taken in Bochner sense.

3 Main results

The operators Sq(`)`≥0 and >q(`)≥0 are given by

S℘(`) =

∫ ∞
0

ψ℘(θ)>(θ)(`℘)dθ
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Q℘(`)a = ℘

∫ ∞
0

θψq(θ)>(θ)(`℘)dθ

with φ℘ which is a probability density function and stated on this intervel (0,∞) as

φ℘(ϑ) =
1

℘
ϑ−1−

1
℘$℘(θ−

1
q ) ≤ 0,

$℘(ϑ) =
1

π
Σ∞n=1(−1)n−1ϑ−n℘−1

Γ(n℘+ 1)

n
sin(nπ℘)

The above results of Rq and >q are used in up coming the mild solution.

4 Mild Solution


CD℘

0 a(t) = Aa(`) +Bu(`) + (g(`, a(`− a),
∫ `
0
h(`, κ, a(κ)))dκ)

` ∈ J = [0, b], ` 6= `i, i = 1, ...,m, 1 < ℘ < 2

δa(`i) = Ii(a(`i)), i = 1, ...,m

χy(0) = a0 + ω(a) a′(0) = a1

(2)

Lemma 4.1. If

a(`) = a(0) + χy′(0)`+
A

Γ(℘)

∫ t

0

(`− κ)℘−1a(κ)dκ

+
B

Γ(℘)

∫ t

0

(`− κ)℘−1u(κ)dκ+

∫ t

0

(
g(`, a(`− a),

∫ t

0

h(`, κ, χy(κ)))dt

)
dκ

holds then we have

v(λ) =

∫ t

0

Q℘(`− κ)(`− κ)℘−1[Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`)))dκ

+S℘(a0 + ω) +Q℘(`− κ)(`− κ)℘−1a1 + Σ0<`i<`S℘(`− `i)Ii(a(`i))]

Proof.

CD℘
0 a(`) = Aa(`) +Bu(`) + g(`, a(`− χy),

∫ t

0

h(`, κ, a(κ))dκ

a(`)− a(0)− χy′(0)` =
A

Γ(℘)

∫ t

0

(`− κ)℘−1a(κ)dκ

+
B

Γ(℘)

∫ t

0

(`− κ)℘−1u(κ)dκ

+

∫ t

0

(
g(`, a(`− a),

∫ t

0

h(`, κ, a(κ)))dt

)
dκ

χy(`) = a(0) + a′(0)`+
A

Γ(℘)

∫ t

0

(`− κ)℘−1a(κ)dκ

+
B

Γ(℘)

∫ t

0

(`− κ)℘−1u(κ)dκ

+

∫ t

0

(
g(`, a(`− a),

∫ t

0

h(`, κ, a(κ)))dt

)
dκ
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taking laplace on both sides

£a(t) = £a(0) + £a′(0)`+
A

Γ(℘)
£

∫ t

0

(`− s)℘−1£a(κ)dκ

+
B

Γ(℘)
£

∫ t

0

(`− κ)℘−1£(uκ)dκ

+£

∫ t

0

(
g(`, a(`− a),

∫ t

0

h(`, κ, a(κ)))dt

)
dκ

∫ ∞
0

e−(λ)(κ)a(κ)dκ =

∫ ∞
0

e−(λ)(κ)a(0)dκ+
a1
λ2

+
A

λ℘

∫ ∞
0

e−(λ)(κ)a(κ)dκ

+
B

Γ(℘)
λ℘
∫ ∞
0

e−(λ)(κ)u(κ)dκ

+

∫ t

0

(g(`, a(`− a),

∫ t

0

h(`, κ, a(κ))))dκ

Let

v(λ) =

∫ ∞
0

e−(λ)(κ)a(κ)dκ u(λ) =

∫ ∞
0

e−(λ)(κ)u(κ)dκ

z(λ) =

∫ ∞
0

e−(λ)(κ)a(0)dκ ω(λ) =

∫ ∞
0

(
g((`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dt

)
dκ

v(λ) =
Av(λ)

λ℘
+
Bu(λ)

λ℘
+
z(λ)

λ℘
+
ω(λ)

λ℘
+
a1
λ2

v(λ)− Av(λ)

λ℘
=

Bu(λ)

λ℘
+
z(λ)

λ℘
+
ω(λ)

λ℘
+
a1
λ2

v(λ)[1− A

λ℘
] =

[Bu(λ) + z(λ) + ω(λ)]

λ℘
+
a1
λ2

v(λ)[λ℘ −A] = λ℘
[Bu(λ) + z(λ) + ω(λ)]

λ℘
+ λ℘

a1
λ2

v(λ) = Bu(λ)[λ℘ −A]−1 + z(λ)[λ℘ −A]−1 + ω(λ)[λ℘ −A]−1

+a1λ
℘−2[λ℘ −A]−1

put

[λ℘ −A−1] =

∫ ∞
0

e(−λ)(κ)Q(κ)dκ

v(λ) = Bu(λ)

∫ ∞
0

e−(λ
℘)(κ)Q(κ)dκ+ z(λ)

∫ ∞
0

e−(λ
℘)(κ)Q(κ)dκ

+ω(λ)

∫ ∞
0

e−(λ
℘)(κ)Q(κ)dκ+ a1λ

℘−2
∫ ∞
0

e−(λ
℘)(κ)Q(κ)dκ
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Let

κ = `℘

dκ = ℘`℘−1dt

v(λ) = Bu(λ)

∫ ∞
0

e−(λ
℘)(`℘)Q(`℘)℘`℘−1dt+ z(λ)

∫ ∞
0

e−(λ
℘)(`℘)Q(`℘)℘`℘−1dt

+ω(λ)

∫ ∞
0

e−(λ
℘)(t℘)Q(`℘)℘`℘−1dt+ a1λ

℘−2
∫ ∞
0

e−(λ
℘)(`℘)Q(`℘)℘`℘−1dt

v(λ) = Bu(λ)

∫ ∞
0

e−(λt)
℘

Q(`℘)℘`℘−1dt+ z(λ)

∫ ∞
0

e−(λt)
℘

Q(`℘)℘`℘−1dt

+ω(λ)

∫ ∞
0

e−(λ`)
℘

Q(`℘)℘`℘−1dt+ a1λ
℘−2

∫ ∞
0

e−(λ`)
℘

Q(`℘)℘`℘−1dt

put

e−(λ`)
℘

=

∫ ∞
0

e−(λ)(`)(θ)ψ℘(θ)dθ

v(λ) = Bu(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`)(θ)ψ℘(θ)Q(`℘)℘`℘−1dtdθ

+z(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`)(θ)ψ℘(θ)Q(`℘)℘`℘−1dtdθ

+ω(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`)(θ)ψ℘(θ)Q(`℘)℘`℘−1dtdθ

+a1λ
℘−2

∫ ∞
0

∫ ∞
0

e−(λ)(`)(θ)ψ℘(θ)Q(`℘)℘`℘−1dtdθ

put

` =
`′

θ

d` =
d`′

θ

v(λ) = Bu(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
dt′

θ
dθ

+z(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
d`′

θ
dθ

+ω(λ)

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
dt′

θ
dθ

+a1λ
℘−2

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
d`′

θ
dθ

v(λ) =

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
Bu(λ)

d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
z(λ)

d`′

θ
dθ
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+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
ω(λ)

dt′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
χy1

dt′

θ
dθ

put the values of u(λ), z(λ), ω(λ)

v(λ) =

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
B

∫ ∞
0

e−(λ)(κ)u(κ)dκ
dt′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1

∫ ∞
0

e−(λ)(κ)a(0)dκ
dt′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘

`′℘−1

θ℘−1
∫∞
0

(g(`, a(`− a)),
∫ t
0
h(`, κ, a(κ))

dκ
d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
a1
d`′

θ
dθ

v(λ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`
′+κ)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
Bu(κ)dκ

d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`
′+κ)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
a(0)dκ

d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1∫ ∞
0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dκ
d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
t′℘−1

θ℘−1
a1
d`′

θ
dθ

v(λ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`)ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
Bu(κ)dκ

dt′

θ
dθ

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`)ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
a(0)dκ

d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1∫ ∞
0

(g(`, χy(`− a)),

∫ t

0

h(`, κ, a(κ)))dκ
d`′

θ
dθ

+

∫ ∞
0

∫ ∞
0

e−(λ)(`
′)ψ℘(θ)

Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘−1
a1
d`′

θ
dθ
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v(λ) =

∫ ∞
0

e−(λ)(`)
[ ∫ ∞

0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

θ℘
℘
`′℘−1

θ℘
Bu(κ)dκd`′

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

θ℘
℘
`′℘−1

θ℘
a(0)dκd`′

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘

`′℘−1

θ℘

∫ ∞
0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ))dκ)d`′

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘
a1d`

′
]
dθ

Now we invert laplace transform

v(λ) =

[ ∫ ∞
0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘
Bu(κ)dκd`′

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘
a(0)dκd`′

+

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘∫ ∞
0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dκd`′

+

∫ ∞
0

ψ℘(θ)
Q(`′℘)

(θ℘)
℘
`′℘−1

θ℘
a1d`

′
]

v(λ) =

[ ∫ ∞
0

∫ ∞
0

ψ℘(θ)Q(θ)(`℘)℘(`℘−1)θdtBu(κ)dκ

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)Q(θ)(`℘)℘(`℘−1)θd`a(0)dκ

+

∫ ∞
0

ψ℘(θ)Q(θ)(`℘)℘(`℘−1)θd`∫ ∞
0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dκ

+

∫ ∞
0

ψ℘(θ)Q(θ)(`℘)℘(`℘−1)θa1d`

]
Q℘(`) =

∫ ∞
0

ψ℘(θ)Q(θ)(`℘)℘(`℘−1)θdt

v(λ) =

[ ∫ ∞
0

∫ ∞
0

ψ℘(θ)Q(θ)(`− κ)℘℘(`− κ)℘−1θd`Bu(κ)dκ

+

∫ ∞
0

∫ ∞
0

ψ℘(θ)Q(θ)(`− κ)℘℘d`a(0)(`− κ)℘−1θdκ

+

∫ ∞
0

ψ℘(θ)Q(θ)(`− κ)℘℘`℘−1θdt

9



International Journal of Advancements in Mathematics 1 (1) 2021. 1-16

∫ ∞
0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dκ

+

∫ ∞
0

ψ℘(θ)Q(θ)(`− κ)℘℘(`℘−1)θa1d`

]

v(λ) =

[ ∫ t

0

Q℘(`− κ)(`− κ)℘−1Bu(κ)dκ+

∫ t

0

Q℘(`− κ)(`− κ)℘−1a(0)dκ

+

∫ t

0

Q℘(`− κ)(`− κ)℘−1d`

∫ s

0

(g(`, a(`− a)),

∫ t

0

h(`, κ, a(κ)))dκ

+

∫ t

0

Q℘(`− κ)(`− κ)℘−1a1d`

]

v(λ) =

∫ t

0

Q℘(`− κ)(`− κ)℘−1[Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`)))dκ

+S℘(a0 + ω) +Q℘(`− κ)(`− κ)℘−1a1 + Σ0<`i<`S℘(`− `i)Ii(a(`i))]

This is a mild solution of control problem (1.2)

5 Example

Example 5.1. Let P℘ > 1. Let Q℘(`) be uniformly continuous for ` > 0. We take v, ν(v) is non empty ;
if, in addition, R℘(`) is compact for ` > 0 then ν(v) is an Rδ set.

Proof. The operator Fu is stated as on OD(H,A) as

Fu(a)(`) = S℘(`)(a0 + ω(a)) +

∫ t

0

(`− s)℘−1Q℘(`− κ)[
Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`)

]
dκ

+Q℘(`− κ)(`− κ)℘−1a1 + Σ0<`i<`S℘(`− `i)Ii(a(`i))

We make four sections of this proof. In common sense, firstly we proof first part of this theorem. That is
exactlly that a ∈ ν(v) ∀ Ev has a fixed point . We states that Ev = F1 + Fu2 here

F1(a)(`) = S℘(`)(a0 + ω(a)) +Q℘(`− κ)(`− κ)℘−1a1 + Σ0<`i<`S℘(`− `i)Ii(a(`i))

Fu2 (a)(`) =

∫ t

0

(`− κ)℘−1Q℘(`− κ)

[
Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`)

]
dκ

10
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STEP 1. A priori bounded solution. such that ||a|| ≤ r

||a(`)|| ≤ ||S℘(`)a0||+ ||S℘(`)ω(a)||+
∫ t

0

(`− κ)℘−1||Q℘(`− κ)Bu(κ)||

+

∫ t

0

(`− κ)℘−1||Q℘(`− κ)(g(κ, a(κ)),∫ t

0

h(κ, `, a(`))d`)||dκ

+||Q℘(`− κ)(`− κ)℘−1a1||+ ||Σ0<`i<`S℘(`− `i)Ii(a(`i))||

||a(`)|| ≤ N ||a0||+N ||ω(A)||+ ℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1||Bu(κ)||dκ

+NΣ0<`i<`di||(a(`i))||+Nm||Ii(0)||+ ℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1[
µ1(κ)||a(κ)||+ µ1(κ)

∫ κ

0

q(κ, `)||a(`)||d`
]
dκ

+
℘N

Γ(℘+ 1)
(`− κ)℘−1||a1||

||a(`)|| ≤ N ||a0||+NM∗ +
℘Nb℘ − 1

p

Γ(℘+ 1)

(
P − 1

p℘− 1

) p−1
p

||Bu||

+NΣ0<`i<`di||(a(`i))||

+Nm||Ii(0)||+ ℘N

Γ(℘+ 1)
supµ1(κ)(1 + ||q∗||∞L )

∫ t

0

(`− κ)℘−1||a(κ)||dκ

+
℘N

Γ(℘+ 1)
(`− κ)℘−1||a1||

Let

c1 =
℘N

Γ(℘+ 1)
supµ1(κ)(1 + ||q∗||∞L )

∫ t

0

(`− κ)℘−1||a(κ)||dκ

+
℘M

Γ(℘+ 1)
(`− κ)℘−1||a1||

c2 = N ||a0||+NM∗ +
℘Nb℘ − 1

p

Γ(℘+ 1)
(
P − 1

p℘− 1
)

p−1
p ||Bu||

+Nm||Ii(0)||+NΣmi=1di||(a(`i))||
||a(`)|| ≤ c1[1 +H∗E℘(c2Γ(℘)b℘)]iE℘(c2Γ(℘)b℘)

This implies that ||a|| ≤ s.
in PC(J,X). We obtain h(κ, `, an(`))→ h(κ, `, a(`)), a.e.(κ, `) ∈ Ξ

||h(κ, `, an(`))|| ≤ q(κ, `)||an(`)|| ≤ q(κ, `)ra.e.(κ, `) ∈ Ξ

Hence, from the lebesgue dominated convergence theorem, we can deduce∫ κ

0

h(κ, `, an(`))d`→
∫ κ

0

h(κ, `, a(`))d`, a.e.(κ, `) ∈ Ξ

11
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∫ t

0

(`− κ)℘−1Q℘(`− κ)(g(κ, an(κ)),

∫ κ

0

h(κ, `, an(`))d`)dκ

→
∫ t

0

(`− κ)℘−1Q℘(`− κ)(g(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`)dκ

≤ M ||ω(an)− ω(a)||+ Σmi=1M ||Ii(an(`))− Ii(a(`))||

+||
∫ t

0

(`− κ)℘−1Q℘(`− κ)[(g(κ, an(κ)),

∫ κ

0

h(κ, `, an(`))d`)

−(g(κ, a(κ)),

∫ κ

0

h(κ, `, a(`))d`)]dκ→ 0

This shows the Ev is compact.
STEP 3. Ev is µ - condensing. Let f ∈ OD(H,A) be a convergence set that is

ν(Fu(Ω)) ≥ ν(Ω).

However, we take a series an ⊂ f hold

zn(`) = S℘(`)(a0 + ω(a)) +

∫ t

0

(`− κ)℘−1Q℘(`− κ)[
Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`)

]
dκ

+Q℘(`− κ)(`− κ)℘−1a1 + σmi=1S℘(`− `i)Ii(a(`i))

ν(Fu(Ω)) = [γ(zn),modC(zn)]

Connectedness of series ω, Ii, we gain

X(S℘(`)ω(an)) = 0, X(S℘(`− `i)Ii(a(`i))) = 0

(`− κ)℘−1Q℘(`− κ)(g(κ, an(κ)),

∫ κ

0

h(κ, `, an(`))d`

X(zn(`)) = X(S℘(`)(a0 + ω(a)) +

∫ t

0

(`− κ)℘−1Q℘(`− κ)[
Bu(κ) + (g(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`

]
dκ

+Q℘(`− κ)(`− κ)℘−1a1 + ΣS℘(`− `i)Ii(a(`i)))

≤ X(S℘(`)ω(an)(`)) + ΣX(S℘(`− `i)Ii(a(`i)))

+X(Q℘(`− κ)(`− κ)℘−1a1)

+X(

∫ t

0

(`− κ)℘−1Q℘(`− κ)g(κ, an(κ)),

∫ t

0

h(κ, `, a(`))d`)dκ)

+X(Q℘(`− κ)(`− κ)℘−1a1)

12
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≤ 2℘N

Γ(℘+ 1)

∫ t

0

(κ− `)℘−1µ2(κ)

[
X(an(κ)) +X

(∫ t

0

h(`, κ, a(`))d`

)]
dκ

≤ 2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1µ2(κ)

[
X(an(κ)) + 2

(∫ κ

0

µ3(κ, `)d`

)
X(an(κ))

]
dκ

≤ 2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1µ2(κ)(1 + 2µ∗3)eLκe−LκX(an(κ))]dκ

≤ 2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1µ2(κ)(1 + 2µ∗3)eLκµ2(κ) sup e−LκX(an(κ))]dκ

=
2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1µ2(κ)(1 + 2µ∗3)eLκµ2(κ)dκγ(an)

Now we write

σ(`) =
2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1µ2(κ)(1 + 2µ∗3)eLκµ2(κ)dκ

and choiceL > 0 enoughly big that is
max e−L`σ(`) < 1

we assuming that

γ(an) ≤ γ(zn) = supe−L`X(zn(`)) ≤ supe−L`σ(`)γ(an)

This goes further γ(an) = 0

On the contrary , we read

gn(`) = f(`, an(`),

∫ t

0

h(`, `, an(`))d`) +Bu(t)

Furthermore, in the form of strong compactness of >(`) and the conectedness of f, Ii, we proof easily this
that the set F1an is relatively correct. thus, since three sets F1an and Fu2 an are relatively compact, we have

modC(zn) = modC(Fuan) = modC(F1an + Fu2 an) = 0

Fu2 an(`) =

∫ t

0

(`− κ)℘−1Q℘(`− κ)gn(κ)dκ

is equi-continuous.
Therefore the set F1an is relatively compact. combining the above equations , some has υ(Ω) = 0 we refers
that Ev is connectedness. We proofs that the fixed point set for Fu is non empty and compact. suppose
ρ ∈ OD(H;A) be the answer of differential equation

||ρ(`)|| = N ||a0||+NM∗ +
℘Nb℘−

1
p

Γ(℘+ 1)

P − 1

p℘− 1

p−1
p

||Bu||

+MΣ0
i=mdi||(ξ(`i))||+Nm||Ii(0)||

+
℘N

Γ(℘+ 1)
supµ1(κ)(1 + ||q∗||∞L )

∫ t

0

(`− κ)℘−1||ξ(κ)||dκ

+
℘N

Γ(℘+ 1)
(`− κ)℘−1||ξ1||

Then it is easy to verify that f is compact, open and concave set. The closed ness of f together with
relatively connectedness of f and compactness of Fu refers that Fu has compact values . However, if a ∈ f,

13
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then alike to the results .we have

Ev(a)(`) ≤ N ||a0||+NM∗ +
℘Mb℘−

1
p

Γ(℘+ 1)

P − 1

p℘− 1

p−1
p

||Bu||

+NΣ0
i=mdi||(a(`i))||+Nm||Ii(0)||

+
℘N

Γ(℘+ 1)
supµ1(κ)(1 + ||q∗||∞L )

∫ t

0

(`− κ)℘−1 sup ||a(`)||dκ

+
℘N

Γ(℘+ 1)
(`− κ)℘−1||a1||

Fu(a)(`) ≤ M ||a0||+NM∗ +
℘Mb℘−

1
p

Γ(℘+ 1)

P − 1

p℘− 1

p−1
p

||Bu||

+NΣdi||(a(`i))||+Nm||Ii(0)||

+
℘M

Γ(℘+ 1)
supµ1(κ)(1 + ||q∗||∞L )

∫ t

0

(`− κ)℘−1 sup ||ξ(κ)||dκ

+
℘M

Γ(℘+ 1)
(`− κ)℘−1||ξ(κ)||

Fu(a)(`) = Ξ(`)

STEP 4. As in our knowledge that non linear function f is compact, thus we take a series gn of locally lips
chitz function such that

||gn(`, a(`),

∫ t

0

h(`, `, a(`))d`)− g(`, a(`),

∫ t

0

h(`, `, a(`))d`)|| < εn

suppose we state an infinitesimal operator by

Fun (a)(`) = S℘(`)(a0 + ω(a)) +

∫ t

0

(`− κ)℘−1Q℘(`− κ)[
Bu(κ) + (gn(κ, a(κ)),

∫ t

0

h(κ, `, a(`))d`)

]
dκ

+Q℘(`− κ)(`− κ)℘−1a1 + Σ0<`i<`S℘(`− `i)Ii(a(`i))

for every a ∈ OD(H,A). Indeeed, the operator Fun is well defined. We too note that for every a ∈ OD(H,A)

≤ 2℘N

Γ(℘+ 1)

∫ t

0

(`− κ)℘−1||gn(`, a(`),

∫ t

0

h(`, `, a(`))d`)

−g(`, a(`),

∫ t

0

h(`, `, a(`))d`)||dκ

≤ ℘Nb℘

Γ(℘+ 1)
εn

||(I −Fun )(a)(`)− (I −Fu)(a)(`)|| I −Fun reaches to K −Ev uniformly on OD(H,A), Here K represents an
identical operator. Moreover

||gn(`, a(`),
∫ t
0
h(`, κ, a(κ))dκ)|| ≤ 1 + µ1(`)(1 + ||q∗||)||a||

gn(κ) = (`− κ)℘−1Q℘(`− κ)g(κ, ak(κ),
∫ s
0
h(κ, `, ak(`))d`)

is derivatively bounded for every bounded series ak ⊂ OD(H,A).Thus it follows from the connectedness of
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R℘(`) for ` > 0 that X(gn(s)) = 0 for every ` ∈ K, κ < `

(I − Fun )(a) = y

has at least a mild solution for every y ∈ OD(H,A). Now the locally lipschitz continuity of gn implies that
the solution is unique.

6 Conclusion

In above thesis, mild solution of the system of fractional evolution equations is find out with renewed and
to practice of existing releted literature. The underlaying have been with logics and characteristics:

1. The topological structure of mild solution set for a control problem controled by semi linear fractional
impulsive evolution equations by non local conditions.

2. The Rδ Property of mild solution set is gained by put the measure of non compactness and a fixed
point theorem of non convex valued graph.

3. Then this conclusions is put to prove that the presented control problem has a reachable invariant set
under non linear perturbation.

4. The gain conclusions are also put to properties the approximate controllability of present control
problem.
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