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Abstract This paper introduces the averaging principle (AP) as a method for solving fuzzy stochas-
tic fractional integro-evolution equations (FSFIEEs). By making certain assumptions, the solutions
of FSFIEEs can be estimated as mean square solutions of averaged fuzzy stochastic systems. This
technique simplifies the analysis and comprehension of complex systems that are subject to both
randomness and uncertainty.
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1. Introduction

In physics and a variety of other subjects, the averaging approach is a strong in-
strument for examining the qualitative properties of dynamical systems. This method
demonstrates a link between averaged system solutions and standard form solutions
(1; 2). However, the AP for FSFIEEs has yet to be investigated in the literature. We
make the first attempt to investigate this strategy in this work.
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(3; 4; 5) contain pivotal results on the AP for crisp stochastic differential equations
(SDEs). Tan et al. (6) were the first to propose the non-Lipschitz averaging method for
stochastic differential delay equations (SDDEs). Mao et al. (7) worked on the AP for
SDDEs with jump in 2015, in 2014, Xu (8) worked with fractional Brownian motion
and Guo (9) worked with nonlinear terms that fulfill the monotone in 2022. While Luo
et al. (10; 11) evaluated the AP for a class of stochastic fractional differential equa-
tions (SFDEs) with space-time delays. The AP for Hilfer fractional SDDEs with Pois-
son jumps was established by Ahmed et al. (12). FSDEs are applied to modern-world
systems where the phenomenon is associated with fuzziness and randomness, respec-
tively. The authors gave a definition of the fuzzy stochastic Ito integral in (13; 14),
employing a mechanism that permits a crisp Ito stochastic integral to be embedded
into a fuzzy space for the construction of a fuzzy random variable (FRV). Abbas et al.
(15; 16) solve ODE. Niazi et al.(17), Iqbal et al. (18), Shafqat et al. (19), Alnahdi (20),
Khan (21) and Abuasbeh et al. (22; 23; 24) existence and uniqueness of the FFEEs
were investigated. Arhrrabi et al. (25) worked on the averging principle for FSDEs by
using the following problem:{

dx(s) = Q(ω,x(ω)dω + ⟨H (ω,x(ω))dB(ω)⟩,

x(0) = x0 ∈ Em,

where Q : ı×Em → Em,H : ı×Em → Rm and x0 : Ω → Em is a FRV. Inspired by
the above work, the author worked on the averaging principle for FSFEEs by using
the following problem:

cDϖ
ωU(ω) = AU(ω)+B

∫
ω

0 Q(ω,U(h(ω))dω + ⟨H (ω,U(ω))dB(ω)⟩,
U(ω) = η0,

U ′(ω) = η1 ∈ Em,

where Q : ı×Em → Em,H : ı×Em → Rm and η0,η1 : Ω → Em is a FRV.
The manuscript discusses a mathematical principle called “the averaging prin-

ciple” (AP) that can be used to solve fuzzy stochastic fractional integro-evolution
equations (FSFIEEs). These equations describe systems that evolve over time and are
affected by both randomness and uncertainty. The AP involves approximating the so-
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lutions of FSFIEEs as mean square solutions of averaged fuzzy stochastic systems.
This means that, under certain assumptions, the behavior of the original system can
be effectively captured by a simpler system that is easier to analyze and understand.
The manuscript likely includes a detailed explanation of the AP and how it can be
applied to FSFIEEs. The assumptions required for the AP to be valid are also likely
discussed. The paper may also include examples of how the AP has been applied in
real-world scenarios. The goal of this study is to apply the Caputo derivative on AP
to FSFIEEs. The remaining work is organized as follows. Section 2 provides the basic
definitions and properties needed throughout this paper. The average method for FS-
FIEEs is examined in Section 3 under some scenarios. The major finding of this work
is illustrated with an example in Section 4. Furthermore, Section 5 has the conclusion.

2. Preliminaries

In this section, we provide an introduction to the notation, definitions, and histori-
cal context that will be utilized throughout the paper. K (Rm) is the nonempty family
of compact and convex subsets of Rm. The dH distance in K (Rm) is defined as

dH (B,D) : max
(

sup
b∈B

inf
d∈D

||b−d||, sup
d∈D

inf
b∈B

||b−d||
)
, B,D ∈ K (Rm).

With respect to dH , it is known that K (Rm) is a separable complete metric space. Let
Em be the fuzzy space of Rm, which is the set of functions V : Rm → [0,1] in which
[V ]α ∈ K (Rm),∀ ∈ [1,2] where

V ϖ := {a ∈ Rm : V (a)⩾ ϖ}, f or ϖ ∈ [1,2],

and
[V ]0 := cl{a ∈ Rm : V (ϖ)> 0}.

Assume
d∞(U,V ) := sup

ϖ∈[0,1]
dH ([a]ϖ ,[b]ϖ )

be the metric satisfying the following properties:
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(i) d∞(a+ c,b+ c) = d∞(a,b),

(ii) d∞(a+b,c+X)⩽ d∞(a,c)+d∞(b,X),

(iii) d∞(λa,λb) = |λ |d∞(a,b),λ ∈ Rm.

Assume ⟨.⟩ : Rm → Em be an embedding of Rm into Em that is for rm ∈ Rm, one has

⟨rm⟩(a) =
{

1, i f a = rm,

0, i f a ̸= rm.

Remark 1. If V : [0,T ]× Ω → Rm is a Rm-valued stochastic process (SP), then
⟨V ⟩ : [0,T ]×Ω → Em is a fuzzy SP.
Assume {B(ω),ω ∈ ı := [0,T ]} be a 1D Brownian motion described on (Ω,A,P)
which is a complete probability space with a filtration {Aω}ω∈[0,T ] fulfilling conven-
tional hypotheses.

Definition 1. (26) We mean the FRV ⟨
∫

ω

0 V (ν)dB(ν)⟩ by fuzzy stochastic Itô inte-
gral. Let the fuzzy stochastic Itô integral ⟨

∫
ω

0 V (ν)dB(ν)⟩ for every ω ∈ ı, which can
be construed as shown in:〈∫

ω

0
V (ν)dB(ν)

〉
:=

〈∫ T

0
χ[0,ω](ν)V (ν)dB(ν)

〉
.

Proposition 1. (26) If U,V ∈ ℓ2(ı×Φ,N ;Rm), then ∀ω ∈ ı, we have

d2
∞

〈∫
ω

0
U(ν)dB(ν)

〉
:=

〈∫ T

0
χ[0,ω](ν)V (ν)dB(ν)

〉
.

Proposition 2. (27) If U,V ∈ ℓp(ı×Φ,N ;Em), and p ⩾ 1, we have

E sup
a∈[0,ω]

dp
∞

(∫ a

0
U(ν)dν ,

∫
ω

0
V (ν)dν

)
⩽ ω

p−1
∫

ω

0
Edp

∞(U(ν),V (ν))dν .
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3. Main Result

Consider the following FSDEs
cDϖ

ωU(ω) = AU(ω)+B
∫

ω

0 Q(ω,U(h(ω))dω + ⟨H (ω,U(ω))dB(ω)⟩,
U(t) = η0,

U ′(ω) = η1 ∈ Em,

(1)

where Q : ı×Em → Em,H : ı×Em → Rm and η0,η1 : Ω → Em is a FRV. The mild
solution of equation 1 is

U(ω) = Cq(ω)η0 +Kq(ω)η1 +
1

Γ(β )

∫
ω

0
(ω − s)q−1Pq(ω − s)[

B
∫

ω

0
Q(ν ,U(h(ν)))dν +

〈
H (ν ,U(ν))dB(ν)

〉]
dν . (2)

where ω ∈ [0,b]. To demonstrate that the solution to 1 exists and is distinct, we apply
conditions to the coefficient functions.
(A1) There exists a constant C1 > 0 ensures we have ∀ω ∈ ı and ∀x ∈ Em:

d2
∞(Q(ω,U),0̂)⩽C2

1(1+d2
∞(x,0̂)

and
∥H (ω,U)∥2 := d2

∞(⟨H (ω,U)⟩,0̂)⩽C2
1(1+d2

∞(U,0̂)).

(A2) There exists C2 > 0 a constant s.t we have ∀ω ∈ ı and ∀U ∈ Em:

d2
∞(Q(ω,U),Q(ω,V ))⩽C2(1+d2

∞(U,V ))

and

∥H (ω,U)−H (ω,V )∥2 := d2
∞(⟨H (ω,U)⟩,⟨H (ω,V )⟩)⩽C2(1+d2

∞(U,V ).

According to the findings of Malinowski and Michta (26), FSFIEEs 1 has a solution
that is unique U(ω) with the initial data η0 and η1 under the assumptions (A1) and

International Journal of Advancements in Mathematics 2(2), 2022 154

http://www.scienceimpactpub.com/IJAM


(A2). Take the standard form of an equation 2

Uε(ω) = Cq(ω)η0 +Kq(ω)η1 +
1

Γ(β )

∫
ω

0
(ω −ν)q−1Pq(ω −ν)[

εB
∫

ω

0
Q(ν ,U(h(ν)))dν +

√
ε

〈
H (ν ,U(ν))dB(s)

〉]
dν , (3)

where the initial value are η0 and η1, functions Q and H having conditions similar
as in 2, and ε ∈ (0,ε0) and ε > 0 with a fixed value. According to the existence and
uniqueness results, Eq. 3 has a unique solution Uε(ω) for each fixed ε ∈ (0,ε0) and
ω ∈ ı. To determine whether a simple process can approximate the solution Uε(ω),
we make specific assumptions about the coefficients.
Let Q̃ : Em → Em and H̃ : Em → Rm be measurable functions satisfy the condition
(A1) and (A2), as well as:
(A3) For x ∈ Em and ℑq ∈ ı, we have

1
ℑq

∫
ℑ

0
d2

∞(Q(ν ,U),Q̃(U))dν ⩽ β1(T ′)(1+d2
∞(U,0̂)

and
1
ℑ′

∫ T ′

0
∥H (ν ,U)−H̃ (U)∥d

ν ⩽ β2(T ′)(1+d2
∞(U,0̂).

where lim
ℑ′→∞

βi(T ′) = 0, i = 1,2.

We now demonstrate, using the proper preparations, that the solution Uε → Vε of the
given averaged FSFIEEs.

Vε(ω) = Cq(ω)η0 +Kq(ω)η1 +
1

Γ(β )

∫
ω

0
(ω −ν)q−1Pq(ω −ν)[

εB
∫

ω

0
Q̃(ν ,V (h(ν)))dν +

√
ε

〈
H̃ (ν ,V (ν))dB(ν)

〉]
dν , (4)

as ε → 0. Equations 3 and 4 also have a Vε solution under equivalent assumptions.
The main outcome of this work is the theorem that follows, which examines the rela-
tionships between Uε and Vε .
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Theorem 1. Suppose the statements (A1)−(A3) are fulfilled. There exists ε1 ∈ (0,ε0]

for very small numbers ∆, k > 0 and ϖ ∈ (1,2) such that we have ∀ε ∈ (0,ε1], we have

sup
ω∈[0,kε−α ]

Ed2
∞(Uε(ω),Vε(ω))⩽ ∆

Proof. For any ω ∈ [0,U ]⊂ ı,

sup
ω∈[0,U ]

Ed2
∞(Uε(ω),Vε(ω))

= sup
ω∈[0,U ]

Ed2
∞

(
Cq(ω)η0 +Kq(ω)η1 +

1
Γ(β )

∫
ω

0
(ω −ν)q−1Pq(ω −ν)[

εB
∫

ω

0
Q(ν ,U(h(ν)))dν +

√
ε

〈
H (ν ,U(ν))dB(ν)

〉]
,Cq(ω)η0

+Kq(ω)η1 +
1

Γ(β )

∫
ω

0
(ω − s)q−1Pq(ω − s)

[
εB

∫
ω

0
Q̃(ν ,V (h(ν)))dν +

√
ε

〈
H̃ (ν ,V (ν))dB(ν)

〉])
⩽ 2ε

2 sup
ω∈[0,u]

Edω
∞

(∫
ω

0
(ω − s)q−1Pq(ω − s)B

∫
ω

0
Q(ν ,V (h(ν)))dν ,

∫
ω

0
(ω −ν)q−1Pq(ω −ν)B

∫
ω

0
Q̃(ν ,V (h(ν)))ds

)
+2ε sup

ω∈[0,U ]

Ed2
∞

(〈∫
ω

0
H (ν ,Uε(ν))dB(ν)

〉
,

〈∫
ω

0
H̃ (Vε(ν))dB(ν)

〉)
.

Denote by

J1 = 2ε
2 sup

ω∈[0,U ]

Ed2
∞

(∫
ω

0
Q(ν ,U(h(ν)))dν ,

∫
ω

0
Q̃(ν ,V (h(ν)))dν

)
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and

J2 = 2ε sup
ω∈[0,U ]

Ed2
∞

(〈∫
ω

0
H (ν ,Uε(ν))dB(ν)

〉
,

〈∫
ω

0
H̃ (ν ,Vε(ν))dB(ν)

〉)
.

Then, by applying the assumptions of the metric d∞, we obtain

J1 ⩽ 4ε
2 sup

ω∈[0,U ]

Ed2
∞

(∫
ω

0
Q(ν ,Uε(h(ν)))dν ,

∫
ω

0
Q(ν ,Vε(h(ν)))dν

)
+

4ε
2 sup

ω∈[0,U ]

Ed2
∞

(〈∫
ω

0
H (ν ,Uε(h(ν)))dB(ν)

〉
,〈∫

ω

0
H̃ (ν ,Vε(h(ν)))dB(ν)

〉)
:= J11 + J12

We have used Proposition 2 and the assumption (A2) to obtain

J11 ⩽ 4ε
2 sup

ω∈[0,U ]

(
ω

∫
ω

0
Ed2

∞(H (ν ,Uε(h(ν))),H (ν ,Vε(h(ν))))dν

)
⩽ 4ε

2C2U
∫ U

0
Ed2

∞(Uε(ν),Vε(ν))dν .

We apply Proposition 2 and the assumption (A3) to calculate J12.

J12 ⩽ 4ε
2 sup

ω∈[0,u]

(
ω

∫
ω

0
Ed2

∞(Q(ν ,Vε(h(ν))),Q̃(ν ,Vε(h(ν))))dν

)
⩽ 4ε

2 sup
ω∈[0,u]

(
ω

2 1
ω

∫
ω

0
Ed2

∞(Q(ν ,Vε(h(ν))),Q̃(ν ,Vε(h(ν))))dν

)
⩽ 4ε

2U2
β1(U)[1+ sup

ω∈[0,U ]

Ed2
∞(Vε(ω),0̂)]

:= 4ε
2U2

λ1.
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Therefore,

J1 ⩽ 4ε
2C2U

∫ U

0
Ed2

∞(Uε(ν),Vε(ν))dν +4ε
2U2

λ1. (5)

Using Proposition 1, we have the second term J2,

J12 ⩽ sup
ω∈[0,U ]

∫
ω

0
E∥H (ν ,Uε(ν))−H̃ (ν ,Vε(ν))∥2dν

⩽ 4ε sup
ω∈[0,U ]

∫
ω

0
E∥H (ν ,Uε(ν))−H (ν ,Vε(ν))∥2dν

+4ε sup
ω∈[0,U ]

∫
ω

0
E∥H (ν ,Vε(ν))−H̃ (ν ,Vε(ν))∥2dν

:= J21 + J22

Using the assumption (A2), we get

J21 ⩽ 4εC2

∫ U

0
Ed2

∞(Uε(ν),Vε(ν))dν .

Additionally, based on the supposition (A∋), we have

J12 ⩽ 4ε
2 sup

ω∈[0,U ]

(
ω

1
ω

∫
ω

0
E∥(Q(ν ,Vε(h(ν))),H̃ (ν ,Vε(ν)))∥2dν

)
⩽ 4εUβ2(U)[1+ sup

ω∈[0,U ]

Ed2
∞(Vε(ω),0̂)]

:= 4εUλ2.

Therefore,

J2 ⩽ 4εC2

∫ U

0
Ed2

∞(Uε(ν),Vε(ν))dν +4εuλ2. (6)
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By combining 5 and 6, we get

sup
ω∈[0,U ]

Ed2
∞(Uε(ω),Vε(ω))

⩽ 4εu(λ2 + εuλ1)+4εC2(1+ εU)
∫ U

0
Ed2

∞(Uε(s),Vε(ν))dν

⩽ 4εU(λ2 + εUλ1)+4εC2(1+ εu)
∫ u

0
sup

V∈[0,ν ]
Ed2

∞(Uε(ν),Vε(ν))dν

As a result of applying the Gronwall inequality, we obtain

sup
ω∈[0,U ]

Ed2
∞(Uε(ω),Vε(ω))⩽ 4εU(λ2 + εUλ1)e4εC2(1+εU).

Choose ϖ ∈ (1,2) and ℓ is positive s.t ω ∈ [0,ℓε−ϖ ]⊆ ı,

sup
ω∈[0,U ]

Ed2
∞(Uε(ω),Vε(ω))⩽ kℓε1−ϖ ,

where k = 4(λ2 + ℓε1−α λ1)exp{4εC2(1+ ℓε1−ϖ )} is a constant. Consequently, for
each given number ∆,∃ε1 ∈ (0,ε0] such that ε ∈ (0,ε1] and ω ∈ [0,ℓε−ϖ ],

sup
ω∈[0,U ]

Ed2
∞(Uε(ω),Vε(ω))⩽ ∆.

■

4. Example

This part contains example to demonstrate our major point of this paper.

Example 1. Consider the FSFEEs listed below:

c
0Dγ

ωU(ω) = 5sin(ω)cos(ω)U(ω)dω + ⟨hU(ω)dB(ω)⟩,
U(0) = η0,

U ′(0) = η1.

(7)

International Journal of Advancements in Mathematics 2(2), 2022 159

http://www.scienceimpactpub.com/IJAM


The standard form of the FSFEEs is

c
0Dγ

ωUε(ω) = 5sin(ω)cos(ω)Uε(ω)dω + ⟨hUε(ω)dB(ω)⟩.

Note that f (ω,Uε) = 5sin(ω)cos(ω)Uε(ω) and g(ω,Uε) = hUε(ω). Hence,

f̃ (Uε) =
1
π

∫
π

0
5sin(ω)cos(ω)Uε(ω)dω = 2Xε

and
g̃(Uε) =

1
π

∫
π

0
g(ω,hUε)dω = hUε .

As a result, the average form of eq ( 7) is

dV ε = 2εV ε dω +
√

ε⟨hV ε dB(ω)⟩. (8)

Because the coefficients f (ω,Uε) and g(ω,uε) fulfil the assumption (A1)− (A2),
FSFEEs 7 has a unique fuzzy solution. Furthermore, the coefficients f̃ (Uε) and g̃(Uε)

fulfil the assumption (A3). As a result of Theorem 1, the solutions Uε and V ε to Eq. 7
and 8 are equal in mean square concept.

5. Conclusion

We introduce the AP for FSFEEs in this work. We explained that the averaged
FSFIEE solution converges to the standard FSFIEE solution in the concept of mean
square. In the future, we intend to investigate the topic and compensate the conclusion
of the AP for FSFIEEs with and without Hilfer fractional derivative. This field has
great potential for numerous research projects that can lead to significant applications
and theories. We intend to focus our attention on this area of research.
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