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ABSTRAC T 

Regression analysis is prone to the issue of heteroscedastic data in a variety of real-world cases, including 
macroeconomic data. Thus, it is crucial to test the data for possible heteroskedasticity. This is important 
because if the data is found to be heteroskedastic. Then, this may seriously impact the regression analysis's 
estimation and testing phase. It is emphasized that real data may contain one or more outliers; thus, it is 
important to use the appropriate test to test for the presence of heteroskedasticity when there is evidence 
of outliers present in the data. A commonly used test to test for heteroskedasticity is the Goldfeld-Quandt 
(GQ) test. However, its performance becomes questionable when the data contains one or more outliers. 
A modified version of GQ (MGQ) is available in the literature that considers the issue of outliers into 
account while testing for possible heteroskedasticity in the data. Though this is a good addition to an 
existing stream of heteroskedasticity tests, little attention is given to literature regarding its applicability. 
The present study takes the lead and makes the case that practitioners should use this newly proposed 
MGQ test. Various real-world cases using popular data sets are discussed, indicating the superiority of 
MGQ over the conventional GQ test when there are outliers in the data. The findings based on real-world 
data indicate that practitioners should use the MGQ test whenever the data contains outliers to avoid 
misleading conclusions. 
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INTRODUCTION  

The concept of heteroskedasticity dates back to the early days of regression analysis, which was 

pioneered by Sir Francis Galton in the late 19th century. Galton (1883) used regression analysis to study 

the relationship between the height of fathers and their sons and found that the heights of sons tended to 

be closer to the average height of the population than their fathers' heights. However, Galton did not 

explicitly consider the issue of heteroskedasticity in his analysis. It wasn't until the mid-20th century that 

heteroskedasticity became recognized as an issue in regression analysis. The term "heteroskedasticity" 

was first coined by the economist Ragnar Frisch to describe situations where the variance of the dependent 

variable varied across observations (Frisch & Waugh, 1933). Heteroskedasticity is more common in 

cross-sectional data because cross-sectional data usually includes observations from different groups, 

regions, or categories that may have different levels of variability in the dependent variable (Wooldridge, 

2002). This can result in varying levels of variance of the error term in the regression model, leading to 

heteroskedasticity. Heteroskedasticity refers to the situation where the variance of the dependent 

variable (or the error term) in a regression model varies across different groups or observations within 

a dataset (Greene, 2003). 
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Measurement error can also contribute to heteroskedasticity in cross-sectional data. If there is more 

measurement error in some observations compared to others, this can result in varying levels of variability 

in the dependent variable. Extreme values can also contribute to heteroskedasticity in cross-sectional data. 

If some observations have much larger or smaller values than others, this can result in varying levels of 

variability in the dependent variable. When the relationship between the independent and dependent 

variables is nonlinear, this can also result in heteroskedasticity in cross-sectional data (Wooldridge, 2002).  

Heteroskedasticity can lead to incorrect statistical tests in regression analysis. It can lead to biased variance 

estimates in regression analysis. This is because the ordinary least squares (OLS) method assumes that the 

variance of the dependent variable is constant across all observations. When this assumption is violated, 

OLS estimator may produce biased covariance estimates (Gujarati, 2022; Ramsey, 1969). This means that 

the standard errors of the coefficient estimates may be larger than they should be, making it harder to 

detect statistically significant relationships. This can reduce the power of statistical tests and increase the 

probability of type II errors. This is because the OLS estimator places more weight on observations with 

higher variance, leading to a larger standard error and a smaller coefficient estimate. Therefore, it is 

important to test for heteroskedasticity and, if present, to use appropriate methods to correct for it 

(Wooldridge, 2002). 

The detection of heteroskedasticity in regression analysis has a history, and researchers have developed 

many different tests and methods for detecting this issue. The detection of heteroskedasticity in regression 

analysis dates back to the mid-20th century. In the 1950s and 1960s, researchers developed several tests 

for detecting heteroskedasticity, including the Park test (Park, 1966), the Glejser test (Glejser, 1969), the 

Breusch-Pagan test (Breusch-Pagan, 1979), and the White and the Goldfeld-Quandt test (Goldfeld-Quandt, 

1965).Park (1966) proposed a test for heteroskedasticity that involves regressing the absolute residuals 

from the original regression on the independent variables. If heteroskedasticity is present, the absolute 

residuals will be correlated with the independent variables, leading to a significant coefficient in the Park 

test. The Glejser test, proposed by Herbert Glejser (1969), is another test for heteroskedasticity that 

involves regressing the absolute residuals from the original regression on one or more independent 

variables that are thought to be related to the variance of the dependent variable. If heteroskedasticity is 

present, the absolute residuals will be correlated with the independent variables, leading to a significant 

coefficient in the Glejser test. The Breusch-Pagan test, proposed by Breusch and Pagan (1979), is one of the 

most commonly used tests for detecting heteroskedasticity. It is based on regressing the squared residuals 

from the original regression on the independent variables. If heteroskedasticity is present, the squared 

residuals will be correlated with the independent variables, leading to a significant coefficient in the 

Breusch-Pagan test. The White test, proposed by Halbert White (White, 1980), is another commonly used 

test for heteroskedasticity. It involves regressing the squared residuals from the original regression on the 

independent variables and their cross-products. If heteroskedasticity is present, the squared residuals will 

be correlated with the independent variables and their cross-products, leading to a significant coefficient 

in the White test. The Goldfeld-Quandt (GQ) test, proposed by David Goldfeld and Richard Quandt (Goldfeld 

& Quandt, 1965), is a test for heteroskedasticity that involves dividing the sample into two subgroups based 

on a particular independent variable and comparing the variances of the residuals in the two subgroups. If 

heteroskedasticity is present, the variances of the residuals in the two subgroups will be significantly 

different. The Harvey-Collier test, proposed by David Harvey and Paul Collier (Harvey & Collier, 1977), is a 

test for heteroskedasticity that involves regressing the absolute residuals from the original regression on 

a set of predetermined independent variables. If heteroskedasticity is present, the absolute residuals will 

be correlated with the predetermined independent variables, leading to a significant coefficient in the 

Harvey-Collier test. These tests have varying degrees of power and efficiency in detecting 

heteroskedasticity, and the choice of test often depends on the specific characteristics of the data and the 

research question at hand (Harvey & Phillips, 1974). 
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Researchers have also developed graphical methods for detecting heteroskedasticity, such as residual plots 

and scale-location plots (Rosopa et al., 2013). These methods involve plotting the residuals or the absolute 

residuals against the predicted values or the independent variables and visually examining whether there 

is a pattern of increasing or decreasing variance (Evans & King, 1988). 

The GQ is an excellent tool for quickly determining if two or more samples have significantly different 

distributions. Furthermore, because the test is based on non-parametric assumptions and does not require 

the data to follow an exact distribution, it is well-suited for analyzing data sets of varying complexity. The 

Goldfeld-Quandt test (Goldfeld-Quandt, 1972) is particularly useful in cases where there is a suspected 

change in the variance of the residuals across different subsets of the data, such as with financial time-

series data or cross-sectional data with a known grouping structure (Zaman, 1994). A comparison of six 

commonly used tests for the detection of heteroskedasticity shows that Harrison-McCabe test is the most 

powerful test. While the White test has the least power in above all mentioned tests (Uyanto, 2019). The 

literature highlights that heteroskedasticity is an econometric problem that impacts test procedure and 

estimation; hence, identifying the problem is crucial to resolve the issue (Abdul-Hameed & Matanmi, 2021). 

As the presence of an outlier in a data set and subsequent identification of heteroskedasticity lead to biased 

results, the study further suggested a modified version of the Breusch-pagan test for the identification of 

heteroskedasticity in the presence of outliers. 

The Goldfeld-Quandt (GQ) test is a classical test used to detect heteroscedasticity in regression models. The 

test assumes that the variance of the errors in the regression model is a function of one or more of the 

independent variables, and it does not require any assumptions about the distribution of the errors or the 

functional form of the heteroscedasticity. The Modified Goldfeld-Quandt (MGQ) test, proposed by Rana et 

al. (2008), is an extension of the GQ test that allows for nonlinearity in heteroscedasticity. 

The GQ test may fail in the presence of outliers or influential observations, which can bias the test results 

and lead to incorrect conclusions about the presence or absence of heteroscedasticity. The robust 

modification of the GQ test by Rana et al. (2008) addresses this issue by using a trimmed estimator to 

estimate the variances of the residuals replacing the OLS with the least trimmed squares (LTS) approach. 

The trimmed estimator is less sensitive to outliers and is designed to remove the influence of extreme 

observations on the test results. This approach provides a more robust approach to detecting 

heteroscedasticity and can improve the accuracy of regression analysis in practical applications. The use of 

robust statistical methods in detecting heteroscedasticity is particularly important in applications where 

the presence of outliers or influential observations is likely. 

This study is to highlight the importance of MGQ in the presence of an outlier rather than the original GQ 

test. Taken several statistical examples of published articles to promote the MGQ test over the GQ test. So, 

MGQ will be used in case of outlier data in the future. 

Historical Discussion of Heteroskedasticity Detection Tests 

Heteroskedasticity tests are used to detect the presence of heteroskedasticity in a data set. 

Heteroskedasticity is an econometric term used to describe the presence of non-constant variance in the 

residuals of a regression. Heteroskedasticity can occur when the error terms of a regression are not 

independently and identically distributed (i.e., they are not homoskedastic). Heteroskedasticity is a form 

of non-constant variance in the residuals of a regression analysis. It is estimated that approximately 40% 

of all regression analyses suffer from heteroskedasticity. Graphical detection methods include plotting the 

residuals versus the independent variables and studying the pattern. If the points become more dispersed 

as the values of the independent variables increase, then heteroskedasticity may be present. Another 

graphical detection method is plotting the residuals versus the fitted values from the regression line. If the 

points become more dispersed as the fitted values increase, then heteroskedasticity may be present. 

http://scienceimpactpub.com/journals/index.php/jess/


 J. Educ. Soc. Stud. 4(2) 2023. 313-329 

 
316 

Statistical detection methods for heteroskedasticity include the Breusch-Pagan test, the White test, and the 

Goldfeld-Quandt test. The Breusch-Pagan test is a general test for heteroskedasticity and is used to test 

whether the variance of the residuals is related to the values of the independent variables. The White test 

is a more powerful version of the Breusch-Pagan test, which is used to test whether the variance of the 

residuals is related to the squared values of the independent variables. The Goldfeld-Quandt test is used to 

test whether the variance of the residuals is related to the fitted values from the regression line (Asteriou 

& Hall, 2015, 2017). 

The Breusch-Pagan test is a test for heteroscedasticity in regression models (Breusch & Pagan, 1979). It is 

a form of the likelihood ratio test and is used to assess the null hypothesis that the variance of an error term 

is homogeneous across all observations. The test statistic is calculated by regressing the squared residuals 

on the independent variables and testing the significance of the resulting F-statistic. This test is used to 

detect heteroskedasticity in a linear regression model. It examines the correlation between the squared 

residuals and the independent variables. The Breusch-Pagan statistic is calculated by regressing the 

squared residuals on the independent variables and then testing the resulting F-statistic for significance. If 

the F-statistic is significant, then the model suffers from heteroskedasticity.  

The Goldfeld-Quandt test is a test for heteroscedasticity in regression models (Goldfeld & Quandt, 1965, 

1973). The test statistic is calculated by regressing the squared residuals on the independent variables and 

testing the significance of the resulting F-statistic. This test is used to detect heteroskedasticity in a linear 

regression model. It examines the correlation between the residuals and the independent variables. The 

Goldfeld-Quandt statistic is calculated by dividing the data into two groups based on the median value of 

the independent variables and then testing the difference in the variance of the residuals for the two groups 

for significance. If the variance in the two groups is significantly different, then the model suffers from 

heteroskedasticity. 

The White test is a test for heteroscedasticity in regression models (White, 1980). Unlike the Breusch-

Pagan test, the White test does not require the assumption of normally distributed errors. The test statistic 

is calculated by regressing the squared residuals on the independent variables and testing the significance 

of the resulting F-statistic. This test is used to detect heteroskedasticity in a linear regression model. It 

examines the correlation between the squared residuals and the independent variables. The White statistic 

is calculated by regressing the squared residuals on the independent variables and then testing the 

resulting t-statistic for significance. If the t-statistic is significant, then the model suffers from 

heteroskedasticity. 

The Park test is a test for heteroscedasticity in regression models (Park, 1966). The test statistic is 

calculated by regressing the squared residuals on the independent variables and testing the significance of 

the resulting F-statistic. This test is used to detect heteroskedasticity in a linear regression model. It 

examines the correlation between the residuals and the independent variables. The Park statistic is 

calculated by dividing the data into two groups based on the median value of the independent variables 

and then testing the difference in the variance of the residuals for the two groups for significance. If the 

variance in the two groups is significantly different, then the model suffers from heteroskedasticity. 

The Koenker-Bassett test is used to detect heteroskedasticity in a linear regression model. It examines the 

correlation between the absolute value of the residuals and the independent variables. The Koenker-

Bassett statistic is calculated by regressing the absolute value of the residuals on the independent variables 

and then testing the resulting F-statistic for significance. If the F-statistic is significant, then the model 

suffers from heteroskedasticity. 

The Weighted Least Squares (WLS) test is used to detect heteroskedasticity in a linear regression model. It 

examines the correlation between the residuals and the independent variables. The WLS statistic is 

calculated by weighting the residuals according to the size of the independent variables and then testing 
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the resulting F-statistic for significance. If the F-statistic is significant, then the model suffers from 

heteroskedasticity. 

The Generalized Least Squares (GLS) test is used to detect heteroskedasticity in a linear regression model. 

It examines the correlation between the residuals and the independent variables. The GLS statistic is 

calculated by weighting the residuals according to the size of the independent variables and then testing 

the resulting F-statistic for significance. If the F-statistic is significant, the model suffers from 

heteroskedasticity (Kariya & Kurata, 2004). 

The Breusch-Godfrey test is a test for heteroscedasticity in regression models (Breusch & Godfrey, 1978). 

The test statistic is calculated by regressing the squared residuals on the independent variables and testing 

the significance of the resulting F-statistic. The Bartlett test is a test for heteroscedasticity in regression 

models (Bartlett, 1937). The test statistic is calculated by regressing the squared residuals on the 

independent variables and testing the significance of the resulting F-statistic. The Harvey-Collier test is a 

test for heteroscedasticity in regression models (Harvey & Collier, 1977). The test statistic is calculated by 

regressing the squared residuals on the independent variables and testing the significance of the resulting 

F-statistic. 

The Glejser test is a test for heteroscedasticity in regression models (Glejser, 1969). The test statistic is 

calculated by regressing the squared residuals on the independent variables and testing the significance of 

the resulting F-statistic. The Engle-Granger test is a test for heteroscedasticity in regression models (Engle 

& Granger, 1987). The test statistic is calculated by regressing the squared residuals on the independent 

variables and testing the significance of the resulting F-statistic (Andrew, 1993; Andrew & Ploberger, 

1994). 

The Regression Model and Tests for Heteroskedasticity 

Consider a multiple linear regression model: 

𝑌 = 𝛼 + 𝑋𝛽 + µ             (1) 

Where, Y is a N×1 vector containing observations on the dependent variable, β is K×1 vector of unknown 

parameters, X is a N×K matrix of the regressors, and µ is an unobserved error term assumed to be 

independent with mean zero and non-constant variance, i.e., Var(𝜀𝑡)= 𝜎𝑛
2, 𝑛 = 1,2, . . , 𝑁. Note that 

µ~𝑁(0, Σ), 𝑤ℎ𝑒𝑟𝑒, Σ = 𝑑𝑖𝑎𝑔(𝜎𝑛
2), 𝑛 = 1,2, … , 𝑁. 

The usual OLS estimate of true parameter 𝛽 is: 𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋𝑌 with covariance matrix, 𝐶𝑜𝑣(𝛽̂𝑂𝐿𝑆) =

𝜎̂𝑛
2(𝑋′𝑋)−1 (since OLS assumes homoscedasticity), where, 𝜎̂𝑛

2 =
𝑅𝑆𝑆

𝑁−𝐾
, , where RSS is the residuals sum of 

squares obtained from estimating regression in equation (1) above. 

When the assumption of homoscedasticity gets violated, the OLS estimates though remain unbiased and 

consistent but no-longer efficient. In addition, the covariance matrix of OLS estimates, i.e., 𝐶𝑜𝑣(𝛽̂𝑂𝐿𝑆) 

becomes biased inconsistent and this leads to wrong n & F statistics and related confidence intervals thus, 

the significance of regressors also gets affected; specifically, a significant regressor may appear 

insignificant and vice versa. Thus, it is very important to test the regression errors for homoscedasticity by 

using available tests for heteroscedasticity. If null of homoscedasticity gets rejected then one can use 

heteroscedasticity consistent standard errors (HCSEs) while using OLS estimates to get valid inferences 

regarding the significance of regressors. The true covariance matrix of OLS estimates under 

heteroscedasticity is: 𝐶𝑜𝑣(𝛽̂𝑂𝐿𝑆) = (𝑋′𝑋)−1𝑋′Σ(𝑋′𝑋)−1. Note that Σ contains unknown parameters, 𝜎𝑛
2, 

n=1,2,…,N. so usually it is replaced with its estimate, Σ̂ leading to estimated covariance matrix 

as: 𝐶𝑜𝑣(𝛽̂𝑂𝐿𝑆) = (𝑋′𝑋)−1𝑋′Σ̂(𝑋′𝑋)−1. Several variants of Σ̂ are available in literature commonly known as 

heteroscedasticity consistent covariance matrix estimators (HCCMEs) (HC0 to HC5) (White, 1985; Hinkley, 
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1977; Horn et al., 1975; Mackinnon & White, 1985; Ahmed et al., 2017; Dutta & Zaman, 1989; Cook & 

Weisberg, 1983). The HCSEs are obtained by taking square root of diagonal entries of these HCCMEs. 

An important challenge for the practitioner is to decide which test to use to test for the presence of 

heteroscedasticity. A large number of tests are available in the literature, such as Goldfeld and Quandt 

(1965), Glejser test (1969), Harrison–McCabe test (1979), Breusch–Pagan test (1969), White (1980), and 

Mackinnon and White (1985) among others. Our focus is on the GQ test and its several variants (LRGQ and 

MGQ). Before proceeding further, it is good to introduce first the conventional GQ test and then its variants. 

This is done in the following subsections: 

The Goldfeld-Quandt Test 

Goldfeld and Quandt (1965) proposed a test (commonly known as GQ test) to detect Heteroscedasticity in 

a linear regression model. This test is based on the idea of arranging the data in either ascending or 

descending order with respect to an identified variable with which residual variance is highly related. To 

set the stage for the GQ test and its variants, let’s introduce a general framework which is used throughout 

in the discussion that follows from this point onward. 

Consider a sample of N observations ranging from 1 to N ordered in such a way that variances are 

increasing. Divide the sample into two parts by choosing N1 and N2 in such a way that 1 < 𝑁1 < 𝑁2 < 𝑁, 

and defining 𝑌1 and 𝑌2 to be 𝑁1 × 1 and (𝑁 − 𝑁2 + 1) × 1 vectors, with 𝑇1 ≅ 𝑇/2 and 𝑇2 ≅ 𝑇1 + 1, as: 𝑌1 =

(𝑦1, 𝑦2, … , 𝑦𝑇1
)ʹ and𝑌2 = (𝑦𝑇2

, … , 𝑦𝑇)ʹ. Let 𝑋1 and 𝑋2 be 𝑁1 ×  𝐾 and (𝑁 − 𝑁2 + 1) × 𝐾 matrices of 

corresponding values of the regressors and, µ1& µ2 be the corresponding  𝑁1 × 1 and (𝑁 − 𝑁2 + 1) × 1 

error vectors assumed to follow a normal distribution with mean as zero vector and covariance matrices, 

𝜎1
2𝐼𝑁1

 & 𝜎2
2𝐼𝑁−𝑁2+1 respectively. Consider the linear regression model separately for the two halves of the 

sample as: 

𝑌1 = 𝑋1𝛽1 + µ1          (1A) 

𝑌2 = 𝑋2𝛽2 + µ2          (1B) 

Where, µ1 = 𝑁(0, 𝜎1
2𝐼𝑁1

) and µ2 = 𝑁(0, 𝜎2
2𝐼𝑁−𝑁2+1)· 

The focus of GQ is on testing the null hypothesis: 𝐻0: γ = 1 against the alternative, 𝐻1: γ > 1, where, 𝛾 =

𝜎1
2/𝜎2

2, under the assumption that regression coefficients across the two halves are the same, i.e., 𝛽1 = 𝛽2. 

Define 𝛽̂1 = (𝑋′1𝑋1)−1𝑋′1𝑌1 and 𝛽̂2 = (𝑋′2𝑋2)−1𝑋′2𝑌2 as OLS estimates of true parameters in each half of 

the sample and let 𝑅𝑆𝑆1
2 = ‖𝑌1 − 𝑋1𝛽̂1‖

2
 and 𝑅𝑆𝑆2

2 = ‖𝑦2 − 𝑋2𝛽̂2‖
2

be the corresponding sum of OLS 

squared residuals. The original GQ test proposes omitting a few observations from the middle to increase 

the contrast between the variances in the first half of the sample and that of the second half of the sample. 

The GQ statistic is given by: 

𝐺𝑄 = 𝜎̂2𝑛
2 /𝜎̂1𝑛

2 =
𝑅𝑆𝑆2

2/𝑑𝑓2

𝑅𝑆𝑆1
2/𝑑𝑓1

        (2) 

The GQ is an exact test, and it follows an F-distribution under the null of homoscedasticity with 𝑑𝑓2 = 𝑁 −

(𝑁1 − 𝐾) and 𝑑𝑓1 = 𝑁1 −  𝐾 degrees of freedom and suggest rejecting the null when calculating the value 

of GQ-statistics (𝐺𝑄𝑐𝑎𝑙) is found to be greater than the critical value at 1%, 5%, and 10% significance levels 

(𝛼). i.e. 

𝐺𝑄𝑐𝑎𝑙 > 𝐹(𝛼, 𝑑𝑓2, 𝑑𝑓1) 

Following the brief description of a few common tests for the identification of heteroscedasticity. Yet, there 

is evidence that when outliers are present in the data, all of these tests suffer a significant setback. So, Rana 

et al. (2008) created a test that is not greatly impacted by outliers. Here, they suggest a brand test that 
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modifies the Goldfeld-Quandt test. To replace the outlier-affected parts of the Goldfeld-Quandt test with 

reliable replacements. 

Modified Goldfeld Quandt Test 

The modified GQ (MGQ) test proposed by Rana et al. (2008) is a modification of the original Goldfeld-

Quandt test for the case when there are outliers in the data. The key idea of the MGQ test is to identify the 

components of the GQ test that are affected by outliers, and then these are replaced by their robust 

alternatives to get better inferences under Heteroscedasticity.  

This test works in parallel to the original GQ test, where one orders the observations with increasing 

variance and finds outliers via any robust Least Trimmed of Squares (LTS) method proposed by Rousseeuw 

and Leroy (1987) to estimate the regression models in [1A] and [1B] and then compute the deletion 

residuals (Imon, 2003) for the entire data set based on a fit without the points identified as outliers by the 

LTS fit. The modified GQ (MGQ) test is obtained as a ratio of the median of squared deletion residuals for 

the two halves of the entire sample, given as: 

𝑀𝐺𝑄 =
𝑀𝑆𝐷𝑅2

2/𝑑𝑓2

𝑀𝑆𝐷𝑅1
2/𝑑𝑓1

            (3) 

Where, 𝑀𝑆𝐷𝑅1
2 = 𝑚𝑒𝑑‖𝑦1 − 𝑋1𝛽̂1‖

2
 and 𝑀𝑆𝐷𝑅2

2 = 𝑚𝑒𝑑‖𝑦2 − 𝑋2𝛽̂2‖
2

are the median of the squared 

deletion residuals (MSDR) for first and second half of the sample. The MGQ test follows an F distribution 

with 𝑑𝑓2 ≡ 𝑁 − (𝑁1 − 𝐾) and 𝑑𝑓1 ≡ 𝑁1 − 𝐾 degrees of freedom under the null of homoscedasticity while 

the normality assumption holds true. 

The Least Trimmed Squares (LTS) method is a robust regression technique used to fit a regression model 

in the presence of outliers or extreme observations (Rousseeuw & Driessen, 1999). Unlike traditional least 

squares regression, which is sensitive to outliers, the LTS method seeks to minimize the sum of the squares 

of a specified proportion of the smallest residuals. 

The basic idea of the LTS method is to identify and exclude the extreme observations that have the largest 

impact on the traditional least squares regression fit. The LTS method computes the regression coefficients 

that minimize the sum of squares of a specified portion (trimming proportion) of the smallest residuals 

rather than the sum of squares of all residuals. The trimming proportion is typically set to a small value, 

such as 5% or 10%, in order to exclude a significant proportion of the outliers. 

The LTS method provides a robust estimate of the regression coefficients in the presence of outliers and is 

particularly useful when the number of outliers is large or when the distribution of the residuals is 

unknown. However, the method is computationally intensive and may be more time-consuming than other 

robust regression techniques, such as the median absolute deviation method. 

Real World Applications 

This section provides several real-world cases, highlighting the superiority of the MGQ test over the 

conventional GQ approach to detect heteroskedasticity when there are outliers in the design matrix. The 

MGQ test is a statistical method used to detect heterogeneity in error variances, which can occur when the 

variance of errors in a regression model varies across different groups or subsets of data. By using this test, 

researchers can identify which groups have different variances and adjust their analysis accordingly. This 

can be particularly useful in fields such as finance, where heteroscedasticity (i.e., unequal variances) is 

common due to factors such as market volatility. The benefits of using the modified Goldfeld-Quandt test 

include the ability to improve the accuracy of statistical analysis and to identify one or more potential 

outliers or influential observations that may affect the results. Overall, this method provides a valuable tool 

for researchers and practitioners seeking to improve the quality and robustness of their statistical analyses. 
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Case 1: Brain—Body data 

The first case is based on the dataset ‘Animals’, available in the robust base Package of R-Language. It contains 

data on the average body and brain weights of 62 terrestrial mammal species, including three additional 

species of dinosaurs at index 63—65 in Table 1. This data is used by several existing studies including 

Weisberg (1985) and Rousseeuw and Leroy (1987). The idea that a bigger brain is needed to regulate a bigger 

body makes sense. These three dinosaur species, which are represented in the data, have extraordinarily high 

brain-to-body ratios. Could it be that OLS's inability to recognize dinosaurs as exceptional has condemned the 

method to share their demise? Due of OLS's extraordinary sensitivity to "outliers," or data points that depart 

from the norm, this type of phenomenon regularly happens. In applied research, "special purpose" dummies 

are commonly required because they effectively remove the aberrant data from the observations. Sadly, finding 

poorly fitting observations typically requires some detective work. Examining the OLS residuals is a frequent 

method for this aim. The aberrant observation(s) may not, however, be revealed by the OLS residuals. The 

three dinosaur species' differences from the others can be seen by carefully analyzing this dataset and visually 

inspecting the data. When we have high-dimensional data, it is challenging to accomplish this. 

Table 1. Body and brain data example. 

Index Animals body 
(kg) 

brain 
(g) 

Index Animals body 
(kg) 

brain (g) 

1 Lesser short-tailed shrew 0.005 0.14 34 Water opossum 3.5 3.9 

2 Little brown bat 0.01 0.25 35 Rock hyrax-b 3.6 21 

3 Mouse 0.023 0.4 36 Yellow-bellied marmot 4.05 17 

4 Big brown bat 0.023 0.3 37 Verbet 4.19 58 

5 Musk shrew 0.048 0.33 38 Red fox 4.235 50.4 

6 Star-nosed mole 0.06 1 39 Raccoon 4.288 39.2 

7 E. American mole 0.075 1.2 40 Rhesus monkey 6.8 179 

8 Ground squirrel 0.101 4 41 Potar monkey 10 115 

9 Tree shrew 0.104 2.5 42 Baboon 10.55 179.5 

10 Golden hamster 0.12 1 43 Roe deer 14.83 98.2 

11 Mole 0.122 3 44 Goat 27.66 115 

12 Galago 0.2 5 45 Kangaroo 35 56 

13 Rat 0.28 1.9 46 Grey wolf 36.33 119.5 

14 Chinchilla 0.425 6.4 47 Chimpanzee 52.16 440 

15 Owl monkey 0.48 15.5 48 Sheep 55.5 175 

16 Desert hedgehog 0.55 2.4 49 Giant armadillo 60 81 

17 Rock hyrax-a 0.75 12.3 50 Human 62 1320 

18 European hedgehog 0.785 3.5 51 Grey seal 85 325 

19 Tenrec 0.9 2.6 52 Jaguar 100 157 

20 Artic ground squirrel 0.92 5.7 53 Brazilian tapir 160 169 

21 African giant pouched rat 1 6.6 54 Donkey 187.1 419 

22 Guinea pig 1.04 5.5 55 Pig 192 180 

23 Mountain beaver 1.35 8.1 56 Gorilla 207 406 

24 Slow loris 1.4 12.5 57 Okapi 250 490 

25 Genet 1.41 17.5 58 Cow 465 423 

26 Phalanger 1.62 11.4 59 Horse 521 655 

27 N.A. opossum 1.7 6.3 60 Giraffe 529 680 

28 Tree hyrax 2 12.3 61 Asian elephant 2547 4603 

29 Rabbit 2.5 12.1 62 African elephant 6654 5712 

30 Echidna 3 25 63 Triceratops 9400 70 

31 Cat 3.3 25.6 64 Dipliodocus 11700 50 

32 Artic fox 3.385 44.5 65 Brachiosaurus 87000 154.5 

33 Nine-banded armadillo 3.5 10.8 - - - - 

Source: Rousseeuw & Leroy (1987). 
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An LTS regression is run by iterated re-weighted least squares (IRLS), and residuals and weights are 

reported in Table 2.  

Table 2. Bi-square weighting of body brain example. 

Index brain Body residual weight Index brain body residual weight 

63 4.248 9.148 -4.694 0.000 9 0.916 -2.263 0.487 0.959 

64 3.912 9.367 -5.194 0.000 61 8.434 7.843 0.466 0.963 

65 5.040 11.374 -5.563 0.000 39 3.669 1.456 0.465 0.963 

50 7.185 4.127 1.989 0.431 43 4.587 2.697 0.457 0.964 

34 1.361 1.253 -1.691 0.565 22 1.705 0.039 -0.442 0.966 

40 5.187 1.917 1.640 0.587 14 1.856 -0.856 0.377 0.975 

42 5.190 2.356 1.315 0.722 51 5.784 4.443 0.352 0.979 

15 2.741 -0.734 1.171 0.776 36 2.833 1.399 -0.328 0.981 

19 0.956 -0.105 -1.084 0.806 20 1.740 -0.083 -0.315 0.983 

47 6.087 3.954 1.019 0.828 29 2.493 0.916 -0.308 0.984 

8 1.386 -2.293 0.979 0.840 59 6.485 6.256 -0.300 0.984 

5 -1.109 -3.037 -0.961 0.846 30 3.219 1.099 0.282 0.986 

41 4.745 2.303 0.909 0.861 60 6.522 6.271 -0.274 0.987 

37 4.060 1.433 0.874 0.872 23 2.092 0.300 -0.250 0.989 

55 5.193 5.257 -0.847 0.879 31 3.243 1.194 0.234 0.990 

16 0.875 -0.598 -0.796 0.893 21 1.887 0.000 -0.231 0.991 

49 4.394 4.094 -0.778 0.898 3 -0.916 -3.772 -0.220 0.992 

53 5.130 5.075 -0.774 0.899 24 2.526 0.336 0.157 0.996 

32 3.795 1.219 0.768 0.900 44 4.745 3.320 0.150 0.996 

45 4.025 3.555 -0.745 0.906 1 -1.966 -5.298 -0.131 0.997 

38 3.920 1.443 0.725 0.911 28 2.510 0.693 -0.125 0.997 

12 1.609 -1.609 0.693 0.918 56 6.006 5.333 -0.090 0.999 

18 1.253 -0.242 -0.684 0.920 2 -1.386 -4.605 -0.068 0.999 

27 1.841 0.531 -0.673 0.923 48 5.165 4.016 0.051 1.000 

33 2.380 1.253 -0.673 0.923 26 2.434 0.482 -0.044 1.000 

58 6.047 6.142 -0.653 0.927 57 6.194 5.521 -0.043 1.000 

17 2.510 -0.288 0.607 0.937 62 8.650 8.803 -0.035 1.000 

11 1.099 -2.104 0.551 0.948 35 3.045 1.281 -0.029 1.000 

10 0.000 -2.120 -0.536 0.951 6 0.000 -2.813 -0.019 1.000 

13 0.642 -1.273 -0.526 0.952 54 6.038 5.232 0.017 1.000 

4 -1.204 -3.772 -0.507 0.956 46 4.783 3.593 -0.015 1.000 

52 5.056 4.605 -0.497 0.958 7 0.182 -2.590 -0.003 1.000 

25 2.862 0.344 0.488 0.959 - - - - - 
 

It can be seen that the weight increases as the absolute residuals decrease. To put it another way, cases 

with high absolute residuals are typically down-weighted. This result demonstrates that Triceratops, 

Dipliodocus and Brachiosaurus are heavily discounted with a weight of zero. Further, the findings of roubst 

regression will be close to OLS if most of the observations have weight equal to or close to 1. The bisquare 

weighting function zero the weight given to Triceratops, Dipliodocus and Brachiosaurus. In the cases where 

there is a significant difference in an OLS and a robust regression, then one should follow the findings of 

the robust regression as the high disparity between the two regression results indicates that outliers have 

a significant impact on the model's parameters. There are several weighting methods with merits and 

demerits. The bi-square weighting method may produce many solutions, while Huber weights may have 

http://scienceimpactpub.com/journals/index.php/jess/


 J. Educ. Soc. Stud. 4(2) 2023. 313-329 

 
322 

trouble convergent or handling large outliers, so it's up to the practitioners which method to adopt in a 

particular situation. The results of GQ and the MGQ test are provided in Table 3, and the fitted OLS and LTS 

lines are shown in Figure 1. 

Table 3. GQ and MGQ statistics—body and brain weight example. 

Test Statistic cal value p-value 

GQ 5.890 0.007 

MGQ 1.047 0.474 

It can be seen from Table 3 that the GQ test rejects the null of homoskedasticity (with a p-value of 0.007) 

while MGQ test does not reject the null of homoskedasticity indicating that OLS based GQ test findings are 

misled due to presence of outliers (see Figure 1) while the findings of MGQ test suggests that the data is 

homoscedastic. It is highlighted that the presence of outliers makes the GQ test to conclude that there is 

heteroskedasticity while the MGQ test takes care of outliers and thus provides a clearer picture and 

indicates that the data is homoscedastic. Thus, it is advocated that one should use MGQ rather than the GQ 

test when there are one or more outliers in the data. 
 

 

Figure 1. Case 1 (OLS and LTS). 

This outlier can be recognized and ignored by the robust regression model, as shown in Figure 1, which can 

still identify the general trend in the remaining data. Because they can produce accurate answers that are 

unaffected by the outlier points, they are the perfect tool for studying datasets with outliers. The robust 

regression model is successful in bucking the outlier point's influence, as in Table 3, and detecting the trend 

in the remaining data. 

Case 2: Hawkins, Bradu, Kass’s data 

Hawkins, Bradu, and Kass created an artificial data set (Hawkins et al., 1984), as in Table 4. Seventy-five 

observations in four dimensions make up the data collection (one response and three explanatory 

variables). That is a good illustration of how the masking effect works. The first 14 observations, divided 

into two groups of 1–10 and 11–14, are outliers. With robust distances calculated by, for example, MCD - 

covMcd, only observations 12, 13, and 14 show as outliers when using classical methods, but these are 

easily unmasked. 

It is clear that the weight rises roughly in proportion to the fall in the absolute residual. Another way to 

describe it is that cases with significant residuals are often down-weighted. All observations that aren't 

represented above in Table 5 have a weight of 1. In an OLS regression, the weight assigned to each instance 

is 1. As a result, the conclusions of the OLS and robust regression are more similar as more cases in the 

robust regression have weights near to one. You should generally use the robust regression's results if 
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there is a large difference between the outcomes of a regular OLS regression and the robust regression. 

Large discrepancies suggest that outliers have a considerable influence on the model's parameters in 

Figure 2. Many functions each have advantages and disadvantages. 

Table 4. Hawkins, Bradu, Kass’s data. 

Index X2 Y Index X2 Y 
1 1.6 -0.2 38 0.5 -0.7 
2 2.2 -0.9 39 0.1 -0.5 

3 3.3 0.6 40 0.6 0.2 
4 0 0.6 41 2.3 -0.8 
5 3 -0.6 42 0.7 0.6 
6 1.8 -0.9 43 0 -0.7 

7 1.7 0.4 44 2.8 -0.4 
8 0.4 0.2 45 2.5 0.2 
9 1 -0.7 46 1.5 0.7 

10 0.4 0.7 47 1.6 0 
11 1.5 -0.9 48 3.4 -0.1 
12 0 -0.7 49 2.2 0.9 
13 3.2 0.3 50 3 -0.5 
14 3.4 -0.3 51 0.1 -0.9 
15 2.4 -0.4 52 2.2 0.6 
16 2.4 0 53 1.4 0 

17 2 -0.5 54 2.5 0.9 
18 2 -0.2 55 3.4 0.4 
19 2.9 0.1 56 1.6 0.1 

20 0.1 0.6 57 2.4 0.3 
21 3.3 -0.8 58 0.6 -0.5 

22 0 -0.3 59 2.5 -0.7 
23 2.2 0.7 60 2.9 -0.4 
24 2.7 -0.3 61 1.6 -0.1 

25 3 0.7 62 19.7 9.9 
26 2.2 -1 63 20.5 10.1 
27 0.9 0.3 64 20.7 9.6 
28 0.7 -0.3 65 19.6 10.3 

29 2.3 0.7 66 21.5 9.5 
30 1.2 0.9 67 19.6 9.7 

31 3.1 -0.6 68 21.1 10 
32 2 -0.7 69 20.9 10.8 
33 2.1 -0.3 70 20.2 10.3 

34 0.7 0.7 71 20.4 10 
35 3.2 0.1 72 34 0.1 
36 0.8 0.3 73 24 -0.2 
37 0.5 -0.4 74 26 0.7 

Source: Hawkins et al. (1984).  

Table 5. Huber weighting of Hawkins, Bradu, Kass’s data. 

Index Y X2 residual weight Index Y X2 residual weight 

72 -0.4 23 -11.601 0.000 56 0.1 3.2 -0.606 0.959 

73 -0.2 24 -11.931 0.000 65 10.3 20.2 0.583 0.962 

74 0.7 26 -12.091 0.000 30 -0.5 2 -0.570 0.964 

75 0.1 34 -16.931 0.000 45 0.9 2.5 0.565 0.964 

1 0.6 0 1.590 0.735 35 0.7 2.2 0.524 0.969 
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58 -0.8 3.3 -1.559 0.744 28 0.4 1.7 0.489 0.973 

5 0.6 0.1 1.537 0.751 39 0.7 2.3 0.471 0.975 

9 0.7 0.4 1.478 0.769 64 9.9 19.7 0.448 0.977 

15 0.7 0.7 1.319 0.813 49 0.1 2.9 -0.447 0.978 

20 0.9 1.2 1.254 0.830 6 -0.5 0.1 0.437 0.979 

54 -0.6 3.1 -1.253 0.831 38 0.6 2.2 0.424 0.980 

16 0.6 0.7 1.219 0.839 33 -0.3 2.1 -0.423 0.980 

51 -0.6 3 -1.200 0.844 61 0.4 3.4 -0.412 0.981 

36 -1 2.2 -1.176 0.850 55 0.3 3.2 -0.406 0.981 

59 -0.3 3.4 -1.112 0.865 68 9.6 20.7 -0.382 0.984 

53 -0.5 3 -1.100 0.868 10 -0.4 0.5 0.325 0.988 

34 -0.9 2.2 -1.076 0.874 14 -0.3 0.7 0.319 0.989 

46 -0.7 2.5 -1.035 0.883 63 9.7 19.6 0.301 0.990 

40 -0.8 2.3 -1.029 0.884 2 -0.7 0 0.290 0.991 

8 0.2 0.4 0.978 0.895 4 -0.7 0 0.290 0.991 

50 -0.4 2.9 -0.947 0.901 42 0 2.4 -0.282 0.991 

60 -0.1 3.4 -0.912 0.908 31 -0.2 2 -0.270 0.992 

71 9.5 21.5 -0.906 0.910 21 0 1.4 0.248 0.993 

62 10.3 19.6 0.901 0.910 26 0.1 1.6 0.242 0.993 

23 0.7 1.5 0.895 0.912 19 -0.7 1 -0.240 0.994 

48 -0.4 2.8 -0.894 0.912 67 10.1 20.5 0.224 0.994 

12 0.2 0.6 0.872 0.916 70 10 21.1 -0.194 0.996 

17 0.3 0.8 0.866 0.917 66 10 20.4 0.177 0.996 

29 -0.9 1.8 -0.864 0.918 13 -0.5 0.6 0.172 0.997 

18 0.3 0.9 0.813 0.927 57 0.6 3.3 -0.159 0.997 

32 -0.7 2 -0.770 0.934 25 0 1.6 0.142 0.998 

47 -0.3 2.7 -0.741 0.939 44 0.2 2.5 -0.135 0.998 

37 0.9 2.2 0.724 0.942 52 0.7 3 0.100 0.999 

69 10.8 20.9 0.712 0.944 24 -0.2 1.6 -0.058 1.000 

22 -0.9 1.5 -0.705 0.945 27 -0.1 1.6 0.042 1.000 

3 -0.3 0 0.690 0.947 7 -0.9 0.1 0.037 1.000 

41 -0.4 2.4 -0.682 0.948 11 -0.7 0.5 0.025 1.000 

- - - - - 43 0.3 2.4 0.018 1.000 

The findings of GQ and the MGQ are presented in Table 6, which shows that the GQ test rejects the null of 

homoskedasticity (with a p-value of 0.000), whereas the MGQ test does not, indicating that the OLS-based 

GQ test findings are skewed due to the presence of outliers (see Figure 2), whereas the MGQ test provides 

a clearer picture and suggests that the data is homoscedastic. From this, we can conclude that the actual 

problem in the data is of outlier and not the heteroskedasticity. Once outliers have been taken care of, the 

data shows homoskedasticity. Thus, the conclusions based on MGQ provide a more accurate and truthful 

picture. 

Table 6. GQ and MGQ statistics— Hawkins, Bradu, Kass’s data example. 

Test Statistic cal value p-value 

GQ 47.062 0.000 

MGQ 1.126 0.380 
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Figure 2. Case 2 (OLS and LTS). 

Case 3: Boston housing data 

The Boston Housing Dataset is derived from data gathered by the U.S. Census Agency about housing in the 

Boston Mass mentioned in Table 7. 506 observations of 14 attributes make up the dataset. The result or 

dependent variable in our model is the median dollar value of the cost of a home and the Average number 

of rooms per dwelling as an explanatory variable. 

Table 7. Boston housing data.  

Index Cost (in $1000) rooms Index Cost (in $1000) Rooms 

1 27.5 3.561 477 44 7.454 

2 23.1 3.863 478 43.5 7.47 

3 11.9 4.138 479 50 7.489 

4 13.8 4.138 480 43.1 7.52 

5 8.8 4.368 481 42.3 7.61 

6 7 4.519 482 46 7.645 

7 17.9 4.628 483 46.7 7.686 

8 10.5 4.652 484 35.2 7.691 

9 10.2 4.88 485 39.8 7.765 

10 11.8 4.903 486 50 7.802 

11 13.8 4.906 487 45.4 7.82 

12 14.6 4.926 488 43.8 7.82 

13 21.9 4.963 489 50 7.831 

14 50 4.97 490 48.5 7.853 

15 16.1 4.973 491 50 7.875 

16 7.4 5 492 50 7.923 

17 15.3 5.012 493 50 7.929 

18 14.4 5.019 494 50 8.034 

19 9.7 5.036 495 37.6 8.04 

20 8.1 5.093 496 38.7 8.069 

21 16.3 5.155 497 48.3 8.247 

22 17.8 5.186 498 42.8 8.259 

23 13.1 5.272 499 44.8 8.266 

24 7.2 5.277 500 50 8.297 

25 12 5.304 501 41.7 8.337 

26 10.4 5.304 502 50 8.375 
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27 20 5.344 503 48.8 8.398 

28 8.3 5.349 504 50 8.704 

29 20.8 5.362 505 50 8.725 

30 19.7 5.39 506 21.9 8.78 

Source: Derived from U.S. Census service concerning housing in the area of Boston Mass. 

Table 8 shows the residuals and weights obtained by running an LTS regression via IRLS. 

Table 8. Bi-square weighting of Boston housing example. 

Index Median value of 

Owner-

occupied home 

in $1000 

Average 

number of 

rooms per 

dwelling 

residual Weight Index Median value 

of Owner-

occupied 

home in $1000 

Average 

number of 

rooms per 

dwelling 

residual Weight 

469 15 7.313 -18.580 0.00 106 6.3 5.852 -11.824 0.39 

334 7.2 6.434 -17.081 0.05 431 41.3 6.943 11.634 0.41 

473 17.8 7.393 -16.627 0.07 345 13.1 6.471 -11.573 0.41 

297 7.2 6.343 -16.119 0.09 319 12.5 6.405 -11.475 0.42 

229 36.2 6.144 14.986 0.16 389 15.2 6.655 -11.419 0.42 

344 9.6 6.461 -14.967 0.16 69 5 5.683 -11.337 0.43 

413 13.3 6.794 -14.790 0.17 486 50 7.802 11.246 0.44 

479 50 7.489 14.558 0.19 359 14.1 6.525 -11.144 0.44 

362 10.9 6.545 -14.556 0.19 326 13 6.417 -11.102 0.45 

419 14.1 6.833 -14.402 0.20 489 50 7.831 10.940 0.46 

404 13.4 6.749 -14.214 0.21 252 10.9 6.202 -10.927 0.46 

308 9.5 6.38 -14.210 0.21 56 26.4 5.604 10.899 0.46 

171 5.6 5.987 -13.953 0.23 249 11 6.193 -10.732 0.48 

4 13.8 4.138 13.808 0.24 395 16.4 6.701 -10.706 0.48 

13 21.9 4.963 13.180 0.29 307 13.1 6.38 -10.610 0.49 

381 13.4 6.629 -12.944 0.30 147 8.4 5.935 -10.602 0.49 

343 11.8 6.459 -12.746 0.32 491 50 7.875 10.474 0.50 

7 17.9 4.628 12.724 0.32 155 8.8 5.957 -10.435 0.50 

388 13.9 6.649 -12.656 0.33 134 8.3 5.896 -10.290 0.51 

232 8.7 6.152 -12.598 0.33 36 23.7 5.412 10.230 0.52 

402 14.9 6.728 -12.492 0.34 253 11.7 6.208 -10.191 0.52 

58 27.9 5.608 12.357 0.35 335 14.3 6.436 -10.003 0.53 

3 11.9 4.138 11.908 0.38 492 50 7.923 9.966 0.54 

316 12.1 6.404 -11.864 0.39 493 50 7.929 9.903 0.54 

261 10.2 6.223 -11.849 0.39 273 12.6 6.251 -9.745 0.55 
 

We see that the weight roughly rises as the absolute residue falls. To put it another way, down-weighting 

is often used for cases with substantial residuals. The total weight of all observations not shown in Table 8 

above is 1. An OLS regression has a weight of 1 for each case. Because of this, the OLS and robust regression 

results are becoming more comparable as examples in the robust regression with weights near to one 

increase. You should probably use the results of the robust regression if there is a significant difference 

between the results of a regular OLS regression and those of the robust regression, as in Figure 3. Large 

discrepancies suggest that outliers significantly affect the model's input parameters. There are advantages 

and disadvantages to many functions. 
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Table 9. GQ and MGQ statistics— Boston housing example. 

Test Statistical value p-value 
GQ 1.318 0.025 
MGQ 1.067 0.323 

 
 

 

Figure 3. Case 3 (OLS and LTS). 

Now that we have applied our suggested modified Goldfeld-Quandt test to the data sets from earlier 

investigations, the findings are shown in Table 9. From the three empirical examples presented above (Case 

1—3), one can see that when there are outliers in the data sets, the Goldfeld Quandt test is unable to identify 

the heteroscedasticity issue, and in contrast, the MGQ provides a true picture and provides reliable 

inferences regarding the status of homoskedasticity in the data.  

CONCLUSIONS 

By detecting and addressing heterogeneity, researchers can ensure that their statistical models accurately 

reflect the data and avoid making incorrect conclusions. The commonly used test for heterogeneity testing 

is the one proposed by Goldfeld and Quandt (the GQ test). Recently, a modified version of GQ is proposed, 

which has the ability to work well when there are outliers in the data. The present study demonstrates that 

GQ test provides misleading results when the data contains one or more outliers. In contrast to GQ, the 

MGQ test works well under these situations and this study makes the case in favor of MGQ when outliers 

are present in the data. Several examples from real-world data are presented, showing the superiority of 

MGQ over GQ in the presence of outliers. The benefits of using the modified Goldfeld-Quandt test are 

numerous, as it allows researchers to identify potential sources of bias or confounding variables that may 

be affecting their results. By using the modified Goldfeld-Quandt test, researchers can account for these 

differences and ensure that their conclusions are robust and reliable. Overall, the modified Goldfeld-Quandt 

test is an essential tool for researchers working with complex datasets, as it allows them to detect and 

correct for heterogeneity in error variances and improve the accuracy of their statistical models in the 

presence of outliers. 
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